The i860™ XP
Second Generation of the i860™
Supercomputing Microprocessor Family

David Perlmutter
Michael Kagan

Intel Israel
August 1991

Presentation Outline

• i860™ XP CPU Key Attributes
• Supercomputing/Visualization System Requirements
• The i860 XP Microprocessor
• Vector Operation Capabilities
• Multi-Processing Capabilities
• Internal Architecture
• Performance Benchmarks
• $/MFLOP Roadmap
• Summary and Conclusions
i860™ XP CPU Key Attributes

- **Target Markets**
 - Massively Parallel Supercomputer and Multi-Processing Systems
 - Super Workstation & servers
 - High End Workstation Graphics/Accelerator Subsystems

- **Technology**
 - 3 Layer Metal, 0.8μM CHMOS-V Technology
 - 2.55 Million Transistors
 - Die Size: 612 X 404 mils
 - 262 pin CGA Package
 - Frequency 40 & 50 MHz
 - Power Dissipation (@50 MHz) - 5W

Supercomputing/Visualization System Requirements

- **High Throughput Computing Performance**
 - "Number Crunching" Floating-Point Capability
 - Real Time 3D Graphics/Visualization

- **Multiprocessing/Parallel Processing**

- **Vector Processing**

- **High Bus Bandwidth**

- **Scalable Performance**

- **Cost Effectiveness**
The i860™ XP Supercomputing Microprocessor

- Very High Performance
 - 100MFLOPS
 - 400MByte/Sec Bus Bandwidth
 - 40 & 50 MHz Operation
 - 40+ SpecMark
 - 3 operations/cycle

- High Integration, Single Chip

- Multi & Parallel Processing
 - Hardware Cache Consistency
 - Bus Snooping
 - Detached Concurrency Control Unit (DCCU)
 - Scalable - Shared Bus or Massively Parallel

- Upward Software Compatible with i860™ XR CPU

A SUPERCOMPUTING MICROPROCESSOR

Vector Operation Capabilities

- Pipelined Load Instructions
 - Loads 128bits in 2 CLKs
 - Helps to Hide Memory Latency

- Specialized Instructions to Reduce Tight Loops
 - BLA - Add & Branch with 0 latency
 - Dual Instruction mode - FP and Integer parallelism
 - Dual Operation Instructions

- Large D-Cache to hold large Vectors

- Optimized DRAM interface For Fast Bus Throughput
 - Paged DRAM Support
 - Three levels of pipeline
 - Burst Bus
 - Wide Memory Access
Multiprocessing Capabilities

- Reduced Bus Utilization (Scalability)
 - Large On-chip Write-Back Cache
 - 2nd level Write-Back Cache (82490XP/82495XP (Consistency By Inclusion)
 - LOCK by Address
- Data Consistency / Integrity
 - HW Based MESI Cache Consistency Protocol
 - Bus Snooping Concurrently with Cache Look Up
 - Weak/ Strong Write Ordering Mode
 - Data Parity Check - Bus Retry Hooks
- Parallel Processing
 - Loop Level Parallelism (MPIC, DCCU)

Internal Architecture
Performance Benchmarks

Total SPEC * 41+
FP SPEC * 50
Dhrystone 103.9
Triangles/sec 80K
Linpack (Double) MFLOPS 20

* Based on preliminary results on prototype board

i860™ Architecture $/MFLOP Roadmap
Summary & Conclusions

- Supports High End MP/PP Systems Via Coarse to Loop Level of Parallelism
- Supports Large Variety of Memory Sub Systems
 - From DRAM to Sophisticated Second Level Cache Based Systems
 - Scalability From Uniprocessor to Massively Parallel systems
- High Integration
 - RISC core Surrounded with FP, Caches, MMU, and CCU
- Bus Optimized for Vector Operations and Fast Throughput
- Cost Effective MFLOPS

i860™ XP CPU DELIVERS SUPERCOMPUTING PERFORMANCE TO BROAD CLASS OF AFFORDABLE SYSTEMS