DECchip 21066 - Alpha AXP Architecture Processor for Low-Cost Applications

Microprocessor attributes by system band

<table>
<thead>
<tr>
<th>System Band</th>
<th>1st Priority</th>
<th>2nd Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Driven</td>
<td>Performance</td>
<td></td>
</tr>
<tr>
<td>Value Driven</td>
<td>Price/Performance</td>
<td>Performance</td>
</tr>
<tr>
<td>Cost Driven</td>
<td>Price</td>
<td>Integration Performance</td>
</tr>
<tr>
<td>Low-power Driven</td>
<td>Low-power</td>
<td>Integration Performance/Watt</td>
</tr>
</tbody>
</table>
DECchip 21066 Goals

- Highly Integrated Microprocessor
 - Benefits are:
 - Lower System Cost
 - Faster Time-to-Market
- High Performance
- Leverage of Existing Design

Leverage of existing design

- Start with existing CPU, FPU, Instruction and Data cache of 21064
- Remove pin interface logic
- Add memory controller and PCI Bus controller
- Lower manufacturing cost through process shrinks
 - Original design used .75 um process
 - 10% linear shrink for first version (.675 um)
 - 33% linear shrink for second version (.5 um)
CPU and FPU Feature Summary

- 64-bit architecture
- 8-, 16-, 32- and 64-bit integers
- 32 bit instructions
- VAX F and G floating point formats
- IEEE S and T floating point formats
- Virtual address 43 bits
- Physical address 34 bits
- Issue rate — 2 instructions per cycle
- Translation buffer, 32 data, 12 instruction (fully associative)
Primary Caches

- 8 KB instruction
- 8 KB data
- Direct mapped
- 32 byte block size

Internal block diagram
On-chip memory controller:
DRAM and VRAM

- Direct control of all DRAM control signals - only electrical buffering required
- 1 to 4 banks - 2 MB minimum to 512 MB maximum
- Fully programmable timing on per-bank basis
- Optional ECC on per bank-basis
- Graphics hardware for dumb frame buffer assist

On-chip memory controller:
External cache

- 64KB to 2MB (cache size independent of memory size)
- Direct mapped, write-back, block size 8 bytes
- Fully programmable read and write timing
- Cache may be skipped based on physical memory address
- Optional ECC
- Optional tag parity
On-chip memory controller: Graphics hardware

- Plane masking
- Stipple operation
- Write-per-bit memory support
- VRAM Data Transfer cycles in response to monitor timing

On-chip memory controller: Graphics hardware block diagram
Memory Bandwidth

<table>
<thead>
<tr>
<th></th>
<th>I-read</th>
<th>D-read</th>
<th>D-write</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Cache</td>
<td>1.3 Gbyte/s</td>
<td>1.3 Gbyte/s</td>
<td>1.3 Gbyte/s</td>
</tr>
<tr>
<td>External Cache</td>
<td>149 Mbyte/s</td>
<td>183 Mbyte/s</td>
<td>84 MByte/s</td>
</tr>
<tr>
<td>Memory</td>
<td>44 Mbyte/s</td>
<td>47 Mbyte/s</td>
<td>83 MByte/s</td>
</tr>
</tbody>
</table>

Note: 166 MHz, 64 bits/access
PCI Bus

- 32/64-bit multiplexed address and data
- Fully synchronous operation up to 33 MHz
- Burst mode supported for programmed IO and DMA
- Separate initiator and target ready signals
- Symmetric bus mastering
- Byte and word access supported
- Separate configuration space used for initialization

On-chip PCI Bus controller

- Asynchronous to CPU to allow for flexible design options
- Optional scatter-gather map stored in memory
 - 8-entry on-chip scatter-gather entry buffer
- Write buffering
- Read prefetching
- Memory request protocol to support ISA bus bridge
PCI to memory address translation

- **PCI Address**
- **Trans Base Register**
- **Map Entry Address**
- **Map Entry**
- **Data Address**

On chip phase-locked loop

- Allows use of inexpensive oscillator
- Multiplier range is selected at chip reset
Summary

The DECchip 21066 offers...

- Alpha AXP architecture
- Integration of memory and PCI
- Ease of system design

Chip features...

- Process - .675 um, 3 metal layers
- 12.3 x 17.0 mm
- 1,746,892 transistors
- 166 MHz
- 3.3 V power supply