The MVP
(Or A Single Chip Crossbar Shared Memory Heterogeneous MIMD Multi-Processor That Can, Among Many Other Things, Perform Video Compression/Decompression)

By Karl M. Guttag
TI Fellow
Texas Instruments

Trends In Programmable Processor Performance

![Graph showing trends in processor performance]

- Single Chip Parallel Advanced DSPs
- Programmable DSPs
- General Purpose Microprocessors
Algorithm Analysis

Flow Diagram

- **Techniques**
 - Signal Processing
 - Filtering
 - Conditioning
 - Restoration
 - Frequency Transforms
 - Image Analysis
 - Segmentation
 - Grouping/Labeling
 - Feature Extraction
 - Matching
 - Classifying
 - Compression
 - Entropy Encoding
 - Difference Encoding
 - Quantization
 - Motion estimation
- **2-D Graphics**
 - bitBlt
 - Text
 - Font Generation
 - Line/Circle/Ellipse
 - Curves
- **3-D Graphics**
 - 3-D Transforms
 - Hidden Surface
 - Shaded Surfaces

- **Computer Graphics**
 - GUIs
 - 2-D Graphics
 - 3-D Graphics

- **Document Image Processing**
 - Optical Character Recognition
 - Image Compress/Decompress
 - Font Generation
 - Graphics

- **Video Teleconferencing**
 - Image Compress/Decompress
 - Video Resolution Conversion
 - Audio Compress/Decompress
 - Modem

- **Signal Processing**
 - FIR Filters
 - Fractal Transforms
 - Median Filter
 - Run Length Encoding
 - Delta Modulation
 - Radon Transform
 - Projections
 - Histograms & Histogram Equalization
 - Segmentation
 - Adaptive Threshold
 - Connected Component
 - Geometric: SRI Ops
 - Texture: Statistical Ops
 - Motion: Optical Flow
 - Arithmetic & Boolean Pixel Ops
 - Binary-to-Color Expand
 - Font Compiling
 - Line Draw
 - Dithering/Halftoning
 - Anti-Aliasing
 - Phong/Gouraud Shading
 - Alpha Channel
 - Z-Buffer
 - Color Space Conversion
 - ADPCM
 - Sub Band Coding
 - Linear Predictive Coding

What Is Done Poorly Can Dominate Performance

- **Before**
 - Task 1: 5%
 - Task 2: 10%
 - Task 3: 20%
 - Task 4: 5%

- **After**
 - Task 1: 5%
 - Task 2: 10%
 - Task 3: 20%
 - Task 4: 50%
Programmable Multimedia Processor Requirements

Massive amounts of imaging, graphics, and signal processing
- Requires parallel processing (of some form)

Mixture of processing needs
- For high resolution still images, full motion video, 3-D graphics, and Audio
- Requires massive integer and fast floating point math
- Heterogeneous processing requirement

Flexible enough to handle a range of algorithms
- More than just compression standards
- Algorithms are in a state of flux (new ones constantly appearing)
- Algorithms vary dramatically even for the same task (ex Video Compression)

Very high bandwidth
- Wide and fast on-chip memory
- Large amount of on-chip memory to reduce off-chip bandwidth
- Low loss of bandwidth due to inter-processor communications

MIMD Inter-processor Connection Models

Pipeline (ex. Graphics)
- Bucket brigade processing

Multiple Channel Mesh/Array/Hypercube (Transputer, 320C40)

Mixed Private and Bus Shared Memory (Workstations use today)
- Single shared memory with only one processor access at a time
- Most processing out of private memory
- Typically multiple processors to 1 shared memory

Fully Shared Memory
- Multiple processors to multiple shared memories
- Cycle by cycle crossbar connection
- Requires huge busses
- Becomes practical only if the CPUs and memory are on the same chip
Parallel Processing Alternatives

Mixed dedicated & programmable processing

SIMD

MIMD

MIMD Processing Models

Pipeline

Bus Shared Memory

Comm. Port (Mesh/Array/Hypercube)

Crossbar Fully Shared Memory
Processing Models and Their Limitations

- Mixed hardwired/programmable supports only a few Algorithms
- SIMD only works well for massive uniform processing
 - Very poor at decision making
- Pipeline model is restrictive to algorithms that can be pipelined
- Communication port systems are expandable but:
 - Require that the communication of data is limited (i.e., coarse grain parallelism)
 - The type of processing must be mappable onto the communication structure
- Bus Shared Memory requires coarse grain parallelism
 - Thrashes on access to shared memory otherwise.
- Fully shared memory requires a large crossbar bus
 - Can be done economically only on a single chip

MVP Data and Instruction Routing

[Diagram showing MVP Data and Instruction Routing with components such as Advanced DSP CPU, RISC CPU, FPU, Frame Controllers, Shared RAMs, Transfer Controller, JTAG EMU/TEST, and MP Cache RAMs.
MVP Use Of Caches and Software Managed Memory

Master Processor has instruction and data caches
- For ease of programming in high level languages

Parallel DSPs have instruction caches

Shared memory directly mapped and not cached
- Common Reference by all processors
- No need for coherency detection/protection

Shared memory is software managed by any/all processor(s)
- Anticipatory loading of data and background saving of results by Transfer Controller
- Usually transferred in packets (ex. blocks) of data

Transfer Controller manages all memory traffic
- Autonomous transfers of multi-dimensional data packets
- Performs cache miss and data packet transfers
- Prioritizes requests for transfers
- Controls round robin access to each shared RAM
Processing Models and Their Limitations

Mixed hardwired/programmable supports only a few Algorithms

SIMD only works well for massive uniform processing
- Very poor at decision making

Pipeline model is restrictive to algorithms that can be pipelined

Communication port systems are expandable but:
- Require that the communication of data is limited (ie coarse grain parallelism)
- The type of processing must be mappable onto the communication structure

Bus Shared Memory requires coarse grain parallelism
- Thrashes on access to shared memory otherwise.

Fully shared memory requires a large crossbar bus
- Can be done economically only on a single chip

MVP Data and Instruction Routing
MVP Use Of Caches and Software Managed Memory

Master Processor has instruction and data caches
- For ease of programming in high level languages

Parallel DSPs have instruction caches

Shared memory directly mapped and not cached
- Common Reference by all processors
- No need for coherency detection/protection

Shared memory is software managed by any/all processor(s)
- Anticipatory loading of data and background saving of results by Transfer Controller
- Usually transferred in packets (ex. blocks) of data

Transfer Controller manages all memory traffic
- Autonomous transfers of multi-dimensional data packets
- Performs cache miss and data packet transfers
- Prioritizes requests for transfers
- Controls round robin access to each shared RAM
Flexible Parallel Programming Models With The MVP

- **Fully Shared Parallel**
 - CPU
 - RAMs

- **Pipelined**
 - CPU
 - RAMs

- **Master with Parallel Servers**
 - CPU
 - RAMs

- **Mixed Separate Tasks**
 - CPU
 - RAMs

Master Processor

- 32-Bit RISC Processor
 - Load/Store Architecture

- 31 32-Bit General Purpose Registers
 - Plus R0=0
 - Scoreboarded for Loads and F.P. operations

- IEEE-754 Floating Point Unit
 - Single Cycle Add/Sub (single or double)
 - Single Cycle Multiply (single)
 - Microcoded Multiply (double), Divide, Sq. root

- Parallel Floating Point Instructions
 - Multiply || Add || 64-bit LD/ST(p++) in 1 cycle

- Delayed Branches With 1 Delay Slot

- 15-Bit or 32-Bit Immediate Constants

- Left-most and Right-most one logic

- Instruction and Data Caches
Advanced DSP CPUs

Parallel Execution Units
- Multiplier
- ALU (Splitable at 8- or 16-bit boundaries)
- SIMD operation within an instruction
- 2 Independent Address Units
- Programmable loop controllers

Shift and bit field hardware
- Barrel Rotator
- Mask Generator
- 1-to-n Bit Expander
- LMO, RMO, LMBC, RMBC Bit Detectors

Two data and one instruction ports

Large Instruction Words (64-bit)
- Supports parallel independent operations

Achieving The MVP's Performance

Aimed at tasks that run well on parallel processors
- I.E. not aimed at running existing binary object codes

Multiple on-chip RAMs to provide very high on-chip bandwidth

Crossbar to preserve bandwidth

Advanced DSP CPUs
- Parallel execution units
- Split ALU and bit expander hardware
- Barrel rotation, bit field masking, and bit detection hardware
- Hardware loop controllers

RISC Master Processor with FPU
- Prevents DSPs from being burdened with other system functions
- Parallel Floating Point operations (DSP like)

Transfer Controller (Very Intelligent DMA Controller)
- Autonomously controls transfers of data between memory spaces