Pyramid3D™
Real-time Graphics Processor

Ville Eerola

TriTech Microelectronics, Inc.
1440 McCandless Drive
Milpitas, CA 95035
USA

Overview

• System architecture
• Geometry Processor
• Primitive Processor
• Pixel Processor
• Other features
• Performance
Pyramid3D System Architecture

Geometry Processor

- 3-issue VLIW architecture
- 32-bit fixed point vector datapath
 - Block floating point support
- Hardware division unit
- Integrated data memory
 - 3×128 words 2-port SRAM
- Instruction cache
 - 4-way set associative
 - 4×128 word blocks
GP — Architecture

STREAM I/O → DATAPATH → REGISTER OUT

CONTROL ↔ INSTR. CACHE

GP — Pipeline Model

- Fetch – Decode – Execute
 - Delayed branches
 - Taken branch
 - Branch+1 (delay)
 - Target
 - Target+1
 - Target+2

- Speculative branches
 - Untaken branch
 - Branch+1 (delay)
 - Target (cancel)
 - Branch+2
 - Branch+3

- No interrupts
 - 3 wait sources (cache, stream, user)
 - Use polling to synchronize
GP — Instruction Set

- Compacted VLIW instructions
 - Compaction based on code analysis
- 32-bit fixed instruction size
- 20 combinations of basic instructions

<table>
<thead>
<tr>
<th>Basic Instruction Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALU</td>
</tr>
<tr>
<td>Move</td>
</tr>
<tr>
<td>Branch</td>
</tr>
<tr>
<td>Logic</td>
</tr>
</tbody>
</table>

GP — Instruction Set [cont.]

- Indexed memory access
 - 6 index registers
 - 4 bit offset
 - 16 word zero page direct access
- Absolute branch addresses
 - 14-bit address space
 - Configurable mapping in RAM on graphics card
GP — Instruction Set [cont.]

3D transform of point \((x1\rightarrow y1)\) by \(P(p0, p1, p2, p3)\)

\[
\begin{align*}
\text{YRDBASE} &= \text{Base}(x1) \\
N &= -24
\end{align*}
\]

Load base of \(x1\) and \(y1\)

Fixed point format

1. \(X = \text{RAM}(p1), Y = \text{RAM}(x1)\)
2. \(X = \text{RAM}(p2), R = \text{hi}(X \cdot Y)\)
3. \(X = \text{RAM}(p3), R = \text{hi}(X \cdot Y), M = R\)
4. \(Y = \text{RAM}(p0), R = \text{hi}(X \cdot Y), M = R, A = \text{shift}(M0+M1+M2)\)
5. \(X0 = A2, M = R, A = \text{shift}(M0+M1+M2)\)
6. \(X1 = A2, A = \text{shift}(M0+M1+M2)\)
7. \(X2 = A2\)
8. \(\text{RAM}(y1) = A\)
9. \(A = X + Y\)
GP — Arithmetic Unit

- 32 bit fixed point datapath
- $24 \times 24 \Rightarrow 56$ bit multiplier
 - Modified booth encoded Wallace tree
- 56 bit adder
 - Used for multiplier final adder
 - 2-level carry skip architecture
- $56 \Rightarrow 32$ bit shifter
 - Format select for multiplier
- 32 bit 3-element vector adder
 - AU2 only
- Variable 1 to 3 cycle latency
 - User visible pipeline registers
 - Pass-thrus for simple operations

GP — Other Datapath Features

- Hardware division
 - Radix-4 iterative algorithm
 - 24 and 32 bit formats
 - Quotient and remainder available
- Normalization unit
 - Used for block floating point support
- Logic unit
 - Normal logic operations
 - Bit-field operations
Primitive Processor

- Converts graphics primitives into pixels
- 15 interpolators
- 8 dividers
 - Perspective correct rendering

<table>
<thead>
<tr>
<th>Interpolator</th>
<th>Correction</th>
<th>Stored to FIFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red, Green, Blue</td>
<td>perspective</td>
<td>yes, 8 bits</td>
</tr>
<tr>
<td>Transparency</td>
<td>perspective</td>
<td>yes, 8 bits</td>
</tr>
<tr>
<td>A Texture U, V</td>
<td>perspective</td>
<td>yes, 12 bits</td>
</tr>
<tr>
<td>B Texture U, V</td>
<td>perspective</td>
<td>yes, 12 bits</td>
</tr>
<tr>
<td>Z Depth</td>
<td>linear</td>
<td>yes, 24 bits</td>
</tr>
<tr>
<td>Perspective P</td>
<td>linear</td>
<td>no</td>
</tr>
<tr>
<td>X, Y Coordinates</td>
<td>linear</td>
<td>yes, 22+4 bits total</td>
</tr>
<tr>
<td>3 Edge Functions</td>
<td>linear</td>
<td>no</td>
</tr>
</tbody>
</table>

Supported Graphics Primitives

- Triangle
- Trapezoid
- Line

Primitive to be rasterized

Vertical strips 64 pixels

One pixel separation
Primitive Processor Features

- Hardwired unit
 - Fixed operations on user data
- Two FIFO’s for load balancing
 - Each FIFO 64 130-bit words
- Primitives defined by 3 edge functions
- Operates on vertical strips
 - Better performance due to locality of RAM references
Pixel Processor

- Dual parallel units
- Programmable vector processor
 - Up to 32 instruction shading program
 - Conditional execution ⇒ variable latency
- 4 central buses
 - A, B, and Result 32 bits
 - C 8 bits
- Operations
 - Z-buffer read+compare, write
 - Frame buffer read, write
 - Texture fetch, filter
 - Blend, logic, bump mapping
Pixel Processor Features

- Operates on 32 pixel groups with two units
 - 32 and 16 bit pixel formats
- Variable processing time for each pixel
 - Extra speed from early pixel elimination
- Dithering for better 16-bit quality
 - Uses 4-by-4 ordered dithering
- Environment mapping support
 - Dual textures in single rendering pass
- Bump mapping support
 - Uses two textures to calculate bump effects

SVGA Core and Video Interface

- Integrated with PCI interface
- Full implementation of VGA standard
- Integrated PixBLT engine
- High performance
 - Up to 1600 × 1200 @ 70Hz Displays
 - 80MB/s linear framebuffer access
- Integrated clock synthesizers
- Integrated 200MHz DAC
Memory Manager

- Utilizes single memory space for all data
- Supports 2–32 MB memory with
 - SDRAM
 - SGRAM
 - DRAM (EDO, FPM)
- PCI bypass directly to memory on card

Performance

- 1.3 million 16bpp shaded 25 pixel triangles/s
- 1 million 16bpp shaded, Z-buffered triangles/s
- Maximum pixel fill rate 50 million pixels/s
- GP full triangle init 550k triangles/s
 - Initializes all the parameters
- Up to 10 million triangles/s with multiple chips
 - Need extra hardware to combine results
Physical Characteristics

- 304 pin 31mm MBGA package
- Initial design (sampling 3Q97)
 - 100 MHz clock frequency
 - 0.6 µm 3 layer metal process
 - 13 × 13 mm² area (est.)
- Production version (1Q98)
 - 160 MHz clock frequency
 - 0.35 µm 4 layer metal process
 - 8.6 × 8.6 mm² area (est.)

Summary

- Single-chip 3D graphics solution
 - Geometry Processor
 - Primitive Processor
 - Pixel Processor
 - SVGA
- Multiprocessor architecture
- >1M triangles/s performance
- High quality rendering