A Single-chip MPEG2 MP@ML Video Encoder LSI with Multi-chip Configuration for a Single-board MP@HL Encoder

Nippon Telegraph and Telephone Corporation
Outline

- Background
- Functionality of Video Encoder
- Key features
- Main architecture
- System configurations
- Chip specifications
- Summary
Background

Trend of digital broadcasting

- MPEG2 International Standard in 1994
- Multi-channel digital broadcasting
 - United States in 1994
 - Europe in 1996
 - Japan in 1996
- HDTV digital broadcasting
 - United States in 1998
 - Europe in 1998
 - Japan after 2000
Background

Trend of MPEG2 video encoder LSI

- Three-chip MP@ML in 1995 (Mitsubishi)
- Two-chip SP@ML in 1995 (NTT)
- Single-chip SP@ML in 1997 (Phillips)
- Single-chip MP@ML in 1997 (NEC)
- Multi-chip MP@HL in 1997 (C-Cube)
- Multi-chip MP@HL in 1998 (NTT)
Functionality of Video Encoder

- Standard: SP@ML, MP@ML and 4:2:2Profile@ML with a single chip
 MP@HL (4:2:0 or 4:2:2) with multiple chips

- GOP Structure: I, IP, IB, IBP, IBBP

- Frame Size: 720 x 480 (NTSC) or 720x 576 (PAL) with a single chip
 max 2048 x 2048 with multiple chips

- Input: 4:2:2 Digital Component Signal (Interlaced)

- Output: Elementary Stream or Packetized Elementary Stream
 MP@ML max 15 Mbps
 MP@HL max 80 Mbps
Key features

- Inter- and intra-chip communication based on Flexible Communication Architecture (FCA)
 - Multi-chip MP@HL (4:2:0 or 4:2:2)
 - Improvement of a picture quality

- Wide-range motion estimation using hierarchical-telescopic and area-hopping search

- No peripherals except for SDRAM(s)
Main architecture

Block diagram

SE: Search Engine SIMD: Single Instruction Multiple Data stream processor
SDIF: SDRAM InterFace MDT: Muti-chip Data Transfer interface
Main architecture

Flexible Communication Architecture (FCA)

Flexible data transfer via SDIF
Main architecture

Inter-chip communication

Before transfer

<table>
<thead>
<tr>
<th>SUB-1</th>
<th>REF-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB-2</td>
<td>REF-2</td>
</tr>
<tr>
<td>SUB-3</td>
<td>REF-3</td>
</tr>
<tr>
<td>SUB-4</td>
<td>REF-4</td>
</tr>
</tbody>
</table>

After transfer

<table>
<thead>
<tr>
<th>Chip-1</th>
<th>REF-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>REF-2</td>
</tr>
<tr>
<td>Chip-2</td>
<td>REF-1</td>
</tr>
<tr>
<td></td>
<td>REF-2</td>
</tr>
<tr>
<td></td>
<td>REF-3</td>
</tr>
<tr>
<td>Chip-3</td>
<td>REF-2</td>
</tr>
<tr>
<td></td>
<td>REF-3</td>
</tr>
<tr>
<td></td>
<td>REF-4</td>
</tr>
<tr>
<td>Chip-4</td>
<td>REF-3</td>
</tr>
<tr>
<td></td>
<td>REF-4</td>
</tr>
</tbody>
</table>

SUB: Sub-picture
REF: Reference area

Horizontally split picture

Pixels transferred via MDT
Main architecture

Intra-chip communication

- VIF
- SE
- RISC
- SIMD

Original pictures

2-pel-precision motion vectors and sums of absolute difference

Local decoded pictures

SDRAM
Main architecture

Hierarchical telescopic search

STEP 1
Two-pel search by SE

STEP 2
Full-pel search by SIMD

STEP 3
Half-pel search by SIMD
Main architecture

Area Hopping Search

(1) Motion vectors in the same picture have spatial dependency.
(2) A base vector is determined by analyzing part of the motion vectors on the current coded picture.
Main architecture

Area Hopping Search

Area hopping search range

1st coarse search

2nd coarse search

Base Vector

MB of MV=(0,0)

3rd coarse search

4th coarse search

Complete search range

-113.5/+99.5 (Hor.), +/-57.5 (Vert.)
System configurations

MP@ML encoder

A single-chip MP@ML encoder with only two 16-Mbit SDRAMs
A single-board MP@HL encoder composed of multiple chips with a 64-Mbit SDRAM
Chip specifications

- 0.25-um 4-level metal CMOS
- 5.0 million transistors
- 10.0 x 10.0 mm2 die size
- 81-MHz clock
- 2.5 V/3.3 V
- < 2.0 W
- 208-pin QFP
- No hard macrocell except for memories
Summary

● Flexible system configuration
 ● Multi-chip MP@HL encoder (4:2:0 or 4:2:2)
 ● Single-chip 4:2:2Profile@ML encoder

● Motion estimation using hierarchical-telescopic and area-hopping search
 ● Non area-hopping -113.5/+99.5 (Hor.), +/-57.5 (vert.) for frame
 ● Area-hopping +/-211.5 (Hor.), +/-113.5 (Vert.) for frame
 ● Two-pel-precision search engine with only 32 processing elements

● No peripheral except for SDRAM(s)
 ● 16-Mbit SDRAM x 2 or 64-Mbit SDRAM x 1