A RISC Processor for SR8000: Accelerating Large Scale Scientific Computing with SMP

Toshihiko Kurihara, Eiki Kamada, Kentaro Shimada, Teruhisa Shimizu

Hitachi, Ltd.
Presentation Outline

- SR8000 Block Diagram
- Design Goals
- Pseudo Vector Processing
- Processor Core
- Chip Profile
- Summary
Block Diagram of SR8000

- System to efficiently execute large scale scientific applications.
- Number of nodes: Max 128
- Parallel execution of DO-loops with SMP.
- Efficient processing of data in main memory
- Pseudo Vector Processing

SP: System control Processor
IP: Instruction Processor
Design Goals

• High performance
 - High operating frequency
 - High memory throughput
• Enhancement of Pseudo Vector Processing (PVP) feature
• High reliability
Pseudo Vector Processing

- **Vector Machine**

  ```
  DO I = 1,N
  A(I) = A(I) + B(I)
  ```

- **PVP with SR8000**

  ```
  element #0
  element #1
  element #2
  element #n
  ```

 - Compiler generates efficient code using software pipeline technique

HITACHI
Pseudo Vector Processing (cont.)

- Architectural support
 - Prefetch instruction
 - Preload instruction
 - Slide-windowed floating-point registers
 - 128 logical floating-point registers
 - TLB supporting large pages
- Memory system support
 - Pipelined processing of memory requests
 - Prefetch: 16, Preload: 128
 - High speed memory interface: 4GB/sec
Processor Core

- Architecture: 64bit PowerPC(*) + Hitachi Extension
- Out-of-order, superscalar execution
- 4 floating operation / cycle
- Instruction cache: 64KB, 2-way set associative, 128B / line
- Data cache: 128KB, 4-way set associative, 128B / line
- Quad-word (16B) load
- Fault detection logic
- Pseudo Vector Processing features

(*) PowerPC is a trade mark of International Business Machines Corporation.
Summary of Superscalar Execution

- Number of Functional Units
 - Integer: 2 ALUs, 2 shifter / mergers, 1 multiplier, 1 divider
 - Floating: 2 multiply-add units (4 floating operations / cycle), 1 div / sqrt unit
 - 2 Load / Store units
 - 1 Branch / Condition Register operation unit
 - 1 Predicate unit
- Superscalar Execution
 - Fetch: 8 instructions / cycle
 - Dispatch: 5 instructions / cycle (5-th instruction must be a branch)
 - Execution: 8 instructions / cycle
 - Completion: 6 instructions / cycle
Instruction Fetch

- 64KB, 2-way set associative Instruction Cache
- Line Size: 128B
- 16B x 2 bank
- Up to 8 instructions are fetched per cycle.
- Branch prediction
 - BTAB: 0 cycle
 - BTAC: 1 cycle
 - BHT: 2 cycle

FAR: Fetch Address Register
BTAB: Branch Address Target Buffer
BTAC: Branch Address Target Cache
BHT: Branch History Table
Floating-Point Register

- Basic instructions (load/store, preload, fadd,) can directly specify 128FPRs.
- Slide-Windowed Floating-Point Register
 - Number of global registers: 4 / 8 / 16 / 32
 - Minimum slide pitch: 2
 - Instructions to control register window
- Large register file
 - 1.8KB
Prefetch and Preload

- Prefetch and preload releases resources (reorder buffers, rename registers, ...) as soon as address translation completes.
 - Does not occupy resources for a long time.
- Prefetch
 - Transfers one cache line (128B) from main memory to cache.
 - Data arrival is checked by line transfer buffer.
 - Up to 16 transfers are processed in pipeline manner.
 - Line transfer buffer also handles cache miss of load instruction.
- Preload
 - Transfers 8B from main memory to a floating-point register.
 - Bypasses data cache.
 - Directly specifies 128 FPR.
 - Target register is not renamed.
 - Up to 128 transfers are processed in pipeline manner.
 - Data arrival is checked by scoreboard.
Address Translation Resources

- Effective address: 64 bits; Real address: 40 bits
- Instruction TLB
 - 2-way set associative, 512 entries, 4KB / page
- Data TLB
 - 2-way set associative, 512 entries, 4KB / page
 - Covers only 2MB.
- TLB supporting large pages (LTLB)
 - Covers entire physical memory space.
 - Data reference only
 - Size of large page is 16MB-128MB (All entries have same mapping size at the same time.).
 - Direct map, 256 entries
- TLB miss handled by hardware
Memory Interface

• Pipelined processing of fetch requests
 - Prefetch or cache-miss load requests : 16
 - Preload : 128
 - Instruction fetch : 2
• 2 preload requests are issued per cycle.
• 2 store requests are issued per cycle.
• High speed interface --- 4GB/sec
• Invalidate request from memory controller
 - Data cache
 - Instruction cache
 - TLB
Reliability

• On chip memory
 - 100 % Single-bit error detection by parity
 - Erroneous data are not used for execution.
 - Detected error is reported as interrupt.
 - Interrupt handler clears memory.

• Data path
 - Variety of fault detection methods used
 ALU : parity prediction
 Floating-point unit : residue check
 Other important data paths (address, store data,):
 parity
 - Retry instruction if architecture resources maintain correct data
Chip Profile

- Process: 0.25-µm, CMOS
- Number of metal layers: 7
- Power supply: 1.8V
- Frequency: 400MHz(*)
- Die size: 18.5 mm X 18.5 mm
- Transistor: 23 million
- Number of signal pins: 560
- Static circuit except memories and register files

(*)Typical silicon processing and typical environment
Summary

• High performance RISC processor for SR8000
• High memory throughput
• Enhanced Pseudo Vector Processing feature
• Aggressive superscalar execution
• High reliability
 - Fault detection of memory and data path