A Field-Sequential-Color 1024 _ 768 Liquid-Crystal-on-Silicon Display

Michael Bolotski and Jean-Jacques Drolet

The Micro Display Corporation
San Pablo, CA 94806
drolet@microdisplay.com
What is a microdisplay?

- Coverglass
- Conductive film
- Alignment layer
- LC material
- Spacers
- CMOS substrate
- Pixel electrodes
Technology background

Application areas:
- Telecommunications
- Body-worn
- Projection

Microelectronics:
- Use mature CMOS technology
- Integration
- Rapid development cycle

Manufacturing:
- Foundry production of CMOS wafers
- In-house LC assembly and packaging
Twisted-nematic liquid crystal cell

No voltage
- Helix
- Polarization modified
- Bright state

High voltage
- LC molecules vertical
- Polarization unaffected
- Dark state
Electro-optic response

Twisted Nematic LC
- Normally white
- Darker with greater electric field (+ or -)

Requires AC drive
- Prevent ionic impurities from collecting on electrode
- Method: Inversion
- Drive pixel positive then negative

<table>
<thead>
<tr>
<th>Applied Voltage</th>
<th>Pixel Brightness</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 V</td>
<td></td>
</tr>
<tr>
<td>2.5 V</td>
<td></td>
</tr>
<tr>
<td>0 V</td>
<td></td>
</tr>
</tbody>
</table>

coverglass
CMOS Process Enhancements

- Surface reflectivity enhancement
- Flatness
- Fill-factor enhancement
- Internal light capture
Pixel: circuit-design goals

- **Sample-and-hold**
- **Sample rail-to-rail voltages: CMOS T gate**
- **Minimize droop rate: high capacitance (∀ V)**
 - source/drain junctions
 - intermetal capacitors
 - liquid crystal
- **Minimize clock feedthrough: CMOS T gate**
Pixel structure

Schematic

Pass-gate connects storage node to column wire
MicroMonitor architecture

- Column wires
 - Connection to video wire controlled by horizontal register

- Pixels
 - Connection to column wire controlled by vertical register

- Analog value on video wire sampled by column and currently active pixel

- Flashclear charges the entire array to the same voltage
Field-sequential color

<table>
<thead>
<tr>
<th>RED DATA LOAD</th>
<th>LC SETTLING</th>
<th>LED FLASH</th>
<th>GREEN DATA LOAD</th>
<th>LC SETTLING</th>
<th>LED FLASH</th>
<th>BLUE DATA LOAD</th>
<th>LC SETTLING</th>
<th>LED FLASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED FIELD</td>
<td>GREEN FIELD</td>
<td>BLUE FIELD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 VIDEO FRAME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Sequential display of red, green and blue fields
- Display previous frame’s data while new data is buffered \Rightarrow memory
- Need to load pixel array quickly (max. LED flash time, LC settling time)
System architecture

- RAM
- ADC
- DAC
- Memory controller
- PLL
- LVDS
- Display unit
- Display
- Video input (RGB, RGB...)
- Dot clock
- HSYNC
Timing requirements

- **Exceed fusion frequency, avoid flicker**
 - 72 Hz frame rate
 - 216 Hz field rate (4.6 ms)

- **Need ample time for LC settling, LED flash**

- **Only ~2.3 ms left for loading 786,432 pixels**

- **3 ns/pixel for addressing + settling to within 7 mV**

- **12 ns/pixel with 4X parallelism**
Flashclear: motivations

Speeding LC transition advantageous in many ways

- More complete LC switching improves brightness and contrast
- Higher illumination duty cycle improves brightness
- Relaxes load-time requirement
Flashclear: principle of operation

- Start some LC transitions before data is loaded on pixels
- Give slow LC transition a head start
- Simultaneously precharge all pixels to same voltage
Rapid Prototyping Design Cycle

Global Wires
Pixel Designs
Manual Leaf Cell Editing
DisCo compilation
Verification
Global Wires 1: Analysis

MathCAD/Maple symbolic analysis
Detailed parasitic equations
Laplace equations for distributed wires
Symbolic solutions
Parameter Optimization (Wire R, Wire C, switch size)
Specify:

resolution = 640 x 480
pixel size = 17.1 microns
video wire width = 10.2 microns
video wire layout = metal1 over substrate
LCD voltage swing = 1.8 V
etc:

Get:

Pixel charging time (display speed)
Power dissipation

SettleTime sec = 28.206 ns

VideoPowerDiss = 5.09 mW
Global Wires 3: Detailed Simulation

Hspice transistor level simulation of distributed network

Improve simulation accuracy to within 3% compared to quick lumped approximation.
Pixel Issues

Photocurrent leakage (reverse bias into substrate)
Leakage (pass gate)
Coupling to column wire
Coupling to neighbor pixel
Storage capacitance maximization
Yield optimization
Pixel Design Process

Fully manual design
Non-aggressive design rules
Detailed parasitic extraction
Hspice simulation of coupling issues
Fabricated test structures
Leaf Cells

All cells peripheral to pixel array
Example: vertical/horizontal shift registers, guard rings, column switches
Most cells must be pitch-matched to pixel size
Edits required for functionality or process migration, not for resolution or pixel size changes.
Manual LeafCell Editing

Hand-tuned cells, full custom layout
Designed for abutment, non-overlapping
Feed through methodology
Relatively few complex cells
Automatic LeafCell Pitch-Matching

Base cell designed to minimum pitch
Right side designed to be extended to match pixel pitch
Automatic stretching by Display Compiler
Stretched cell is NOT yield optimized (but is tiny fraction of total area)
Now What?

Have pixel layout
Have global wire parameters
Modified leaf cells to match pixel pitch, wire sizes
Now: painstaking task of assembling a chip?
Display Compiler

Constrained geometry specification
“place block A here, aligned with top of block B”
Abstracts leaf cells as bounding boxes and I/O pins
Built on Scheme programming language, allowing embedded code fragments
(build-a-cell "chip"
 `(dc "display_core" :at (0 0))
 (pwc "pad_wiring_channel" :anchor dc :where left :flush bot)
 (te "top_edge" :anchor pwc :where above :flush left)
 (be "bottom_edge" :anchor pwc :where below :flush left)
 (re "right_edge" :anchor te :where right :flush top)
 (ps "pad_stack" :offset (0 ,(- *bot_edge:m2_width*)))
)

(define vertical_shift (build-a-cell "vertical_shift"
 ;; instance list
 `((vb "vshift_bot" :at (0 0))
 (vs "vertical_slice" :anchor vb :where above :flush right :array-y,*pixels-y*)
 (vt "vshift_top" :anchor vs :where above :flush right))

 ;; shape list
 (append`
 ;; the following two are one on top of other along left side of vshift unit
 "metal2",*vshift:powerstrip* ,*MAX_DIMEN* :name vddstrip
 :anchor vs :where left :flush bot :clips ((vt top 0))
 "metal1",*vshift:powerstrip* ,*MAX_DIMEN* :name gndstrip
 :anchor vddstrip :where left-in :flush bot :clips ((vddstrip all 0))
 ;; LC fill channel
 "glass",*MAX_DIMEN* ,*LC_fill_channel* :at (0 ,*vshift:LC_channel_yoffset*)
 :clips ((frame_left right ,(- 0 *fill_channel_area_sep* *frame_less_sep*))))

 ;;propagate up pins
 (propagate-pin "ClockBuf" "metal2" 'vt)
 (propagate-pin "gnd!" "metal2" 'vt)
 (propagate-pin "vdd!" "metal2" 'vt)
))

DisCo: Vertical Shift Register

Power Distribution Width

Vertical Resolution

LC Fill Hole Size
DisCo Features

Parameterized to pixel size, resolution
Local geometric relationships usually do not change
Considerable design re-use
One chip usually described by 20-30 pages
Disco description serves as documentation and design log
One happy family

4 custom designs in one reticle

- **Resolutions:** QVGA, SVGA, XGA
- **Pixel Sizes:** 5x15, 10x10, 12.5x12.5 microns
- **Diagonals:** .3”, .5”, .7”
- **Pixel Types:** Reflective and Diffractive
- **Interfaces:** 4-bank analog FSC, 3-bank spatial
- **Chip Spec:** August 24, 1998
- **Operational:** November 11, 1998
- **4 designs verified in 2.5 months**