Massively Parallel Computing on the FUZION Chip

Ray McConnell
CTO
PixelFusion plc
Overview

- History
- Architecture
- Graphics applications
- Future
- Conclusion
Thoroughbred Technology

- Architecture has evolved over 15 years
 - ’99 FUZION1 - First Product
 - Evolutionary single/multi chip solution
 - ’97 Pixel Flow
 - 8 bit ALU, Sub pixel composition network
 - ’91 Pixel Planes 5
 - 1 bit ALU, Multiple regions connected via crossbar
 - ’86 Pixel Planes 4
 - 1 bit ALU, full 512x512 processor instantiation
 - ‘82 Logic Enhanced Memory Patents filed
 - Assignees: UNC (University of North Carolina)

- Unique patented portfolio
 - 30+ additional patents filed (Architecture + Algorithms)
 - More in process
Architecture - System EPU

- **Generic 32bit EPU (ARC CPU)**
 - Embedded Processor Unit (Synthesised)
 - Data and instruction caches

- **Tightly coupled EPU to SIMD Core**
 - Low latency multitasking OS (EOS)
 - Exception control
 - Memory management
 - Host protocol management
 - High quality real time emulation of VGA
 - Uses SIMD Core
 - Spare processing cycles on EPU for application extensions
Architecture - Core

Thread Manager

Array Controller

Load/Store Controller

Channel Controller

Fuzion Block (1 of 6)

LEE Coefficients

Linear Expression Evaluator

256 Processor Elements

SEQ

Channel

PE Memory

Binning Unit

instructions

Fuzion Bus
Architecture - Blocks

Linear Expression Evaluator

- Processor Element
- PE Register File
- LEE Stage
- Block I/O buffer
- sense amps
- PE Memory: 2 KBytes DRAM

- 256 PEs
- LEE Feedback Bus
- Block I/O Bus
- Transfer Engine
- Binning Unit
- Fuzion Bus Interface

Fuzion Bus
Architecture - LEE

- Replaces interpolation
 - Evaluates $Ax + By + C$ directly at every PE

- Drawing triangles
 - Evaluate edge equations

- Z-buffering, Gouraud shading
 - All linear in screen space, e.g. $Z = Ax + By + C$

- Perspective-correct texturing
 - Texture coordinates $= Ax + By + C$

- LEE accelerates all rasterization operations
 - Also can be used for data distribution functions
Architecture - PE

- ALU (8 bits)
- Register File (32 bytes)
- PE Memory (2KByte DRAM)
- Block I/O Channel
- LEE Result
- Instructions
- Left PE
- Right PE
- LEE Feedback
Characteristics – Key points

- **PE usage efficiency**
 - Algorithmic

- **PE data flow efficiency**
 - Architectural

- **I/O Latency efficiency**
 - Data driven instruction issue control

- **Multithreading**
 - Control units interact via semaphores

- **Enough PE data workspace**
 - 2K Bytes DRAM
 - More complex PE
Characteristics - Silicon

- >500mm²
- 35 Watts
 - Forced Air
- 1036 Pins
 - HPBGA
- ~70M Transistors
- eDRAM process
 - Custom DRAM
- Redundancy
 - PE units + DRAM
 - Yield management
Architecture - Compute numbers

- 1.5 TeraOPS \((1.5 \times 10^{12})\) 8 bit multiplies and adds
 - LEE + PE
 - 12K bit data-path \((8 \times 1536)\)
- 600 Gigabytes/sec on chip DRAM bandwidth
 - 50k bit wide data-bus \((32 \times 1536)\)
- 1.2 Terabytes/sec PE register file data bandwidth
- 1.2 Terabytes/sec inter PE data bandwidth
- >3 GigaFlops \((IEEE\, compatible)\)
 - Can be faster with custom format
- 7 GMACs \((16 \times 16)\)
- 150M 3D Transformations/sec
- 50M Tris/sec
Graphics Applications

- High quality, standard OpenGL
 - 100% compliant v1.2
- High quality, standard Direct 3D
 - 100% compliant DirectX 7
- High quality, standard 2D windows
 - 100% GDI+ compliant
 - Full 256 ROP acceleration
 - Full line & text acceleration with transparency
 - Sophisticated 2D filtering and scaling
- High quality, high resolution MPEG II
- Software is ultimate future-proofing
 - Radical extendibility
 - Completely web revision controlled
SIMD OpenGL

- 100% OpenGL v1.2
 - Region based
 - Efficient Bin sort
 - Bin memory management
 - Efficient with small triangles
 - Blending and texturing is maximally efficient

- Standard extensions
 - Fragment lighting (per pixel shade)
 - Light textures
 - Vertex co-ordinate frames and normal perturbation
 - Multi-sample AA
 - Multi texture and shadow maps
SIMD OpenGL

- Unbounded API extensions
 - Customisable pipeline for lib function mix-match
 - New primitive types (Curved surfaces)
 - User programmable shaders

- Multiple alpha blended underlay & overlay planes

- In field delivery of API enhancements
 - WWW

- Optional fast/highest-quality anti-aliasing

- Optional geometrical processing

- Scaleable software design
 - Will operate on larger/smaller SIMD arrays
Silicon Schedule

- Tapeout Expected by Oct. ’99
- First Silicon early December
 - UMC/USIC .25 µ eDRAM Fab
- First Boards Q1 00
- Full System Qualification and optimized OpenGL & Direct3D in Q2 00
Future – Graphics

- Advanced API acceleration
 - Fahrenheit low level (when available)
- Advanced Anti-Aliasing
 - Extremely high resolution coverage sampling
- Advanced 3D effects
 - Depth of field, motion blur, custom shaders, ..
- Advanced shading
 - Torrance Sparrow micro-facet modelling
- Advanced texturing
 - Image based rendering (texture with Z)
- Advanced geometry
 - Function (particles) or map driven
- Volumetric visualization
- 2D within a 3D desktop - natural next step
 - Readable text in perspective
Future - Silicon

- Larger and faster SIMD arrays
- Smaller and cheaper SIMD arrays
- PE extensions
- Multi-chip implementations
- Target Market Variations
 - Core IP licensable
 - Third party IP integration
Future - Software Development Kit

- **SDK availability**
 - Library of software modules
 * 2D, 3D (Gems), Imaging, Numerical etc.
 - EPU C Compiler
 * EOS extensions
 - Simulators
 * PC Farm acceleration
 - Assemblers
 - Debuggers
 * Hierarchical views of PE register/memory
 - Performance monitors
 * hardware assisted

- **SIMD C++ scheduled for ’00**
 - Syntax extensions
 - Explicit Multi-threading
Future - Applications

- Widening application space
 - Advanced Signal, 2D Image and Video processing
 - Advanced motion detection for video compression
 - Fast fuzzy data search/convolution (DNA sequencing)
 - Machine vision
 - Artificial neural networks
 - Encryption/Decryption/Compression/Decompression

- Can make use of installed graphics hardware
 - CAD acceleration
 - PC Farm super-computing
Future price/performance

Price/Performance > 3x / Year

Time

$/GFLOP

0.25 µ

0.18 µ

0.13 µ

0.10 µ
Conclusion

- Open functionality and re-use of software
 - Real applications, real markets
 - Performance compares with hardwired functions
 - Market scope larger than 3D graphics
 - Software will port rapidly to future generations

- Roadmap into future, beyond 0.13u technologies
 - Verification task massively simplified with replication
 - Highly regular custom silicon layout
 - Deep sub-micron design barrier solution
 - 5k man/gate/day productivity (from ground zero)
 - Higher on next generations
 - Highly parallel embedded test (Using EPU)

- Redundancy for yield management
 - Cost reduction on large die