AMULET3i

An Asynchronous System-on-Chip

Jim Garside
AMULET3i

- What is it?
 - Asynchronous ARM
 - Asynchronous memory
 - Asynchronous bus
 - ...

- Why do it?
 - Low power
 - Low EMI
 - Improved security (?)
Motivation for asynchronous design

- low power
 - clocks cause unnecessary activity

- electromagnetic compatibility (EMC)
 - clocks cause coherent, periodic activity

- modularity
 - ‘object-oriented’ hardware

- performance
 - ‘typical’ rather than ‘worst-case’
The AMULET microprocessors

- **AMULET1 (1994)**
 - Demonstrated feasibility

- **AMULET2e (1996)**
 - Demonstrated merits

- **AMULET3 (2000)**
 - Demonstrates commercial viability of asynchronous SoC design
AMULET3i asynchronous ‘island’

- AMULET3 microprocessor
- 8 Kbytes RAM
- 16 Kbytes ROM
- DMA controller
- Memory interface
- MARBLE -
 - Asynchronous bus
- Synchronous bridge
- Test interface
AMULET3i
AMULET3 microprocessor

Features:

- Harvard bus interface
- Branch prediction
 - fetch suppression
- Both ARM & Thumb
- Register forwarding
- Out-of-order completion
Memory system

- RAM *appears* to be dual-ported
- Instruction bus is simpler \Rightarrow faster
Memory structure

- Unified RAM model
 - arbitration within blocks

- Dual-port efficiency (nearly)
 - extra ‘block buffer’ help
DMA controller/Balsa

- Fairly standard peripheral
 - High performance *not* required
- First application of Balsa
 - asynchronous synthesis language
- About 70,000 transistors
 - Registers hand laid-out
 - Control synthesized
- Usual synthesis benefits ...
AMULET2e EMC tests

Previous results ...

- test card meets EN 55022 without special measures
- clocked card exceeds limit at several frequencies
Chip statistics

Transistor count

- AMULET3: 113,000
- RAM: 504,000
- DMA controller: 70,000
- Memory Interface: 26,000
- Total: 800,000

Geometry

- 0.35 um, 3-layer metal (Generic ASIC rules)

Area

- AMULET3i: ~25mm²
- AMULET3: ~3mm²
Performance

- Simulations at 3.3V, 25°C
- 105 native MIPS (peak)
- 102 MIPS Dhrystone 2.1
- 215mW average power
- Processor core 130mW
Performance

- Processor alone
 - AMULET3 110-140MIPS 780 MIPS/W 3mm²
 - ARM9 120 MHz 800 MIPS/W 3mm²

- Bus bandwidth
 - Instruction bus 105/83 Mwords/s (‘hit’/‘miss’)
 - Data bus 77/63 Mwords/s (‘hit’/‘miss’)
 - MARBLE 55/85 Mwords/s (one/all masters)
Comments

- AMULET3i is about 2.5x faster than AMULET2e
 - 1.7x when normalized for process

- The performance is limited by memory bandwidth

- The processor is within a few % of a contemporary, synchronous ARM in performance, power and silicon area
DRACO

- **DECT Radio Communications Controller**
 - in collaboration with Hagenuk GmbH
 - combines ISDN and DECT telecommunications systems
 - World's first commercial 32-bit asynchronous SoC product
 - volume production this year
DRACO

synchronous peripherals

AMULET3i
asynchronous world
Conclusions

- It is feasible to make asynchronous processors which are competitive

- Asynchronous logic offers some real advantages - especially EMC

- Asynchronous logic is becoming commercially interesting