The Itanium™ Processor Cartridge

Bill Samaras
Itanium™ Processor Cartridge Design Manager
Intel Corporation
Santa Clara, CA
Agenda

• Feature Overview
• Cartridge Form Factor Considerations
 – System topology
• System Bus
• Si Packaging
• Power Delivery
• Thermal Attributes
• Cache Organization
• Electrical Simulation Environment
Itanium™ Processor Cartridge Overview

• A packaging optimization for electrical and thermal performance in a multiprocessor server environment

• ~3" x 5" cartridge contains the Itanium™ Processor and up to 4 megabytes of external L3 cache

• A glueless bidirectional multidrop system bus (CPU to chipset connection)
 – Continuous data transfers at 266 MHz Mega-transfers per second (MT/s) for a total bandwidth of ~2.1GB/s

• ~13GB/sec 4M external L3 cache operates at the processor’s internal (core) clock rate of 800MHz
 – The processor to L3 connection is the BackSide Bus (BSB)

• Power delivered through a custom connection with separate voltages for the 0.18µm CPU and the 0.25µm custom cache devices

• An Integrated vapor chamber thermal lid for heat transfer

• System management features such as temperature monitoring and cartridge identification information
Itanium™ Processor Cartridge Form factor

- Power Connection
- System Bus connection

~5"
~2 3/4"
Cartridge Bus connections

Itanium™ processor cartridge

Backside Bus (BSB)

System Bus

CPU 1

CPU 2

CPU 3

CPU 4

L3 Cache Array

CPU

Chipset

Memory

I/O

Bus terminator

Bus terminator
Physical Topology Considerations

- System Bus & BSB influenced the physical arrangement of the cartridge and the internal die placement more than any other factors.
- I/O signals are physically arranged into a pin grid array (PGA) allowing the cartridge to lay flat on the motherboard (system bus will have minimal overall length).
- System topology promotes two cartridges placed next to each other and duplicated on both sides of the motherboard.
- Cartridge topology minimizes system bus stub length by positioning the CPU die directly over the pin field array and carefully positioning I/O buffers to align with external Interconnect.
- L3 cache silicon is clumped to one end making the on-cartridge BSB electrically short and minimizing the cartridge width.
Critical System Bus Parameters

- Critical electrical parameters for a high performance System Bus
 1. Stub length. Distance from CPU to actual bus wire
 2. Overall bus length
- Horizontal processor card placement minimizes stub length
 – CPU FSB die I/O cell placement matches processor card connector pin placement
- Double sided processor card mounting minimizes bus length
Itanium™ Processor System Bus Topology

4 Itanium Cartridges double side mounted to a motherboard
Packaging

- Itanium™ Processor cartridge contains three substrates
 - Base substrate
 - Twelve alternating layers of impedance controlled interconnect and reference planes
 - CPU package substrate
 - CPU is attached to a 42.5\(^2\)mm ten layer organic land grid array (OLGA) package using C4 technology (Controlled Collapsed Chip Connection)
 - CPU OLGA is solder attached to the base substrate as a ball grid array (BGA)
 - Cache MCM substrate
 - Two die or four die multichip module (MCM)
 - Cache devices are C4 attached to a ten layer OLGA. Cache MCM is solder attached to the base substrate as a large BGA
 - All of these substrates contain a significant number of capacitors used for voltage decoupling purposes
 - Essential for a core speed 4M cache bus
Itanium™ Processor Cartridge Components

- Heat Pipe Lid
- Custom L3 SRAM
- 4M Cache Organic C4 MCM
- Surface mounted Pin Array connection to System Bus
- Edge connector for power delivery
- Cartridge base substrate
- Itanium™ Processor Organic C4 package
Power Delivery

- Cartridge power delivered through a dedicated edge connection that plugs to a custom Power Pod DC-DC converter (voltage regulator)
- The Itanium™ Processor Power Pod contains two power converters; one for each Si voltage
- Power planes of the cartridge base substrate extend into the power converter
- Entire power delivery loop inductance reduced to just a few hundred picohenrys
- Large power currents are eliminated from signal returns paths
Itanium™ Processor Voltage Regulator Module (Powerpod)

Powerpod heatsink

Connection to the cartridge supplies CPU and L3 cache power

Powerpod converts 12VDC or 48VDC to the appropriate CPU and L3 voltages
Power conversion

- Power Pod can convert either +48V or +12V DC to processor and cache voltages
- Hierarchical charge storage concept to lower di/dt demands
 - Capacitors are grouped by their ability to deliver charge
 - Much of the bulk storage capacitance is located inside the power pod
- Mechanically, pod mimics CPU cartridge width to prevent interference with bus performance
Itanium™ Processor System Assembly

- Metal Beam device (board stiffening)
- Power Pod power converter with heatsink (converts 48V to core voltage)
- Retention Mechanism
- Cartridge Socket
- Itanium(tm) Processor Cartridge (blue) with heatsink (red)
Itanium™ Processor System Assembly

Power Pod power converters with heatsink

Itanium™ Processor Cartridges (with heatsink)

~3"
Heat Pipe LID

- The top section of the cartridge is a liquid filled phase change chamber
- Magnifies the thermal performance of the heatsink
- Temperature differential of just a few degrees Celsius across the entire top surface of the cartridge lid
 - Allows the use of a “conventional” air cooled heatsink
- Si contacts the bottom surface of the lid with high performance thermal interface material
System Bus Overview

- A glueless integrated system bus interface
- Up to four Itanium™ Processor cartridges with Intel’s 460GX chipset
- Chipset isolates the memory and I/O subsystems from the system bus
- Bi-directional multi-drop bus
 - 64 bits (plus 8 bits of ECC) for data
- Address bus operates at the system bus frequency (133MHz)
 - Conventional one transfer per clock cycle “common clock” mode
- Data bus can operate in a double pumped (source synchronous) transfer mode
 - Bus is clocked at 133 MHz allowing data transfers up to 266 MT/s or 2.1 GB/s
- double sided topology minimizes the delay impact on address and control signals in the conventional clocking mode
Source Synchronous Timing Scheme

Note: STROBE and STROBE are the Source Synchronous clocks
System Bus Electrical Considerations

- The 460GX chipset architecture splits the address and data paths into separate packages
 - a single electrical load for both data and address
- “package return path inductance” which contributes to simultaneous switching output noise (SSO).
 - return current loops are minimized by proper placement of return vias for image currents
- external termination scheme is used
- system bus signals use Intel’s GTL+ signaling scheme
- GTL+ voltage swing is 0.5V to 1.5V (larger swing than standard GTL) for extra noise margin.
- Compensated output drivers minimize bus reflections and control transmission variations in source synchronous signal groups
System Bus & Chipset Topology

System Bus (FSB)

133 MHz

133 MHz or 266 MT/s

82460GX
SAC

I/O

... MEMORY ...

82460GX
SDC

82460GX
SAC

©2000 Intel Corporation
L3 Cache: The Backside Bus (BSB)

- Packaging the Custom Static RAM (CSRAM) as an MCM improves packaging density and performance
 - SRAM cell redundancy techniques alleviate MCM yield issues
- Two or four discrete 1 MB custom SRAM (CSRAM) devices
 - Each with a built in tag
 - Cache devices are organized in two address banks each containing 2MB of data
- Each bank is arranged as two 64 bit data slices for a total data width of 128 bits
 - This organization reduces the number of electrical loads on the data bus
 - Bandwidth of ~13 GB/s
- 128 bit data bus is divided into eight 16-bit, source synchronous, length matched data groups
- Cache address is 38 bits wide and protected by three bits of parity
- First access latency is 10 cycles
 - From the CPU package through the L3 cache and back to the CPU package
L3 Cache: The Backside Bus (BSB)

- Itanium™ Processor L3 cache line size is 64 bytes accessed as a four cycle burst
- A 128 bit wide data bus with a throughput up to 800 MT/s (full core speed)
- 4 cycle burst capability at core speed (continuous full BW R/W)
- BSB signals use an on die parallel termination scheme to minimize reflections
L3 Cache Organization

ITANIUM™ Processor

BANK 0

CSRAM

DATA ARRAY

TAG ARRAY

DATA [127:64]

SET ADDR

BANK 1

CSRAM

DATA ARRAY

TAG ARRAY

DATA [127:64]

SET ADDR

DATA BUS 64

ADDRESS BUS 38

DATA BUS 64

BACKSIDE BUS

UPPER DATA SLICE

LOWER DATA SLICE

Hot Chips 2000 ©2000 Intel Corporation
4M Cache MCM Routing

4MB MCM Routing Example

BSB Data
(1/2 shown)

BSB Address, Cmd&Cntl
Cartridge Electrical Modeling

- Utilization of full circuit simulators. SPICE or SPICE-like circuit analysis tools capable of combining non-linear transistor models (I/O buffers) with complex interconnect structures
- Electrical parasitics extracted using 3D field solvers
- The partial element equivalent circuit (PEEC) approach, combined with 3D extraction, modeled coupled interconnects and discontinuities
- Explicit return path modeling proved to be a tremendous benefit
Simulation Methodology

Input of driver to output of receiver
(Simulated timing based on reference driver/receiver with network topology)

clock to input of driver
covers all internal delay up to driver input + clk skew + tester guardband

setup/hold
covers all internal timing after receiver output + clk skew + tester guardband
System Bus Simulation vs. Timing

![Graph showing voltage vs. time with labels for STBN [sim], STBN [meas], DATA [sim], DATA [meas], STBP [sim], STBP [meas]]
SUMMARY

- An optimized package for high performance busses
 - High performance system bus
 - High performance core speed 4M cache
- Innovative power deliver scheme
- Thermal solution allowing passive air cooled heat sinks
- Extensive electrical modeling and simulation