InfiniBridge™: An Integrated InfiniBand Switch and Channel Adapter

Chris Eddington
Director of Technical Marketing
Mellanox Technologies

chrise@mellanox.com
Agenda

- InfiniBand Overview
- Virtual Lanes and Virtual Fabrics
- Network Stack and Reliable Connections
- Virtual Interface Architecture
- InfiniBridge™ Transport Protocol Engines
- InfiniPCI Technology
- Summary
InfiniBand Switch Fabric

- **HCA (Host Channel Adaptor)**
 - Connects a CPU to the InfiniBand Fabric

- **TCA (Target Channel Adaptor)**
 - Connects I/O controllers such as Ethernet, SCSI, Fibre Channel to InfiniBand

- **Switches:**
 - Basic building block of InfiniBand Subnets

- **Routers:**
 - Connect IB subnets
 - Connect IB to SAN / LAN / WAN
Network stack

LRH (8) | GRH (40) | Transport (12-40) | Payload(0-4096) | ICRC(4) | VCRC(2)

Application
Upper Layer protocols
Transport Layer
Network Layer
Link Layer
Physical Layer

IB End node | IB Switch | IB Router | Legacy Router | Legacy End node

Mellanox Technologies, Inc.
Packet Format

- **General IB Request Packet Structure**

 - **LRH – Local Route Header** (8 Bytes)
 - VL(4) LVER(4) SL(4) X(2) LNH(2) DLID(16) X(5) PktLen(11) SLID(16)
 - **BTH – Base Transport Header** (12 Bytes)
 - Opcode(8) SE(1) MR(1) PadCnt(2) TVER(4) PKEY(16) X(8) DestQP(24) A(1) X(7) PSN(24)
 - **RETH – RDMA Extended Transport Header** (16 Bytes)
 - VA(64) RKEY(32) DmaLength(32)
Virtual Lanes

- Multiplex independent data streams onto a single physical link:
 - Dedicated management lane
 - Differentiated services on a packet-boundary basis
 - Alleviates head-of-line blocking
 - Allow VL-based load balancing across multiple paths
Credit-based link-level flow control

- Link Receivers grant packet receive buffer space credits per VL

Separate flow control per VL enables Virtual Fabrics

- Multiple protocols on a unified physical network
- Congestion and latency on one VL does not impact traffic with guaranteed QoS on another VL
What makes a Reliable Connection?

- **Reliability (Acknowledgement)**
 - Packets must be in-order
 - No missing packets
 - Flow Control – prevents end point buffer overflow

- **Connections**
 - End to end associations between user space processes (called sockets in TCP/IP)
 - Requires de-multiplexing of datagrams

- **Putting the data where it needs to be**
 - Message copying from kernel to user space
InfiniBand and Virtual Interface
InfiniBridge™ Features

Mellanox InfiniBridge™ MT21108
- Integrated channel adapter and switch

Key Features:
- Supports both 1X (2.5Gb/s) and 4X (10Gb/s) InfiniBand Links
- Hardware Transport Protocol Engines deliver reliable in-order connection
- Multiple Virtual Lanes plus a Dedicated Management Lane
- Multicast Support
- Maximum Transfer Unit (MTU) up to 2K/4K bytes
- Greater than 100 Gb/s Internal Bandwidth
- InfiniPCI™: Transparent PCI-to-PCI Bridge
InfiniBridge™ High Level Block Diagram

- **8 bit CPU Port**
- **PCI 64b/66 MHZ**
- **I²C**
- **Subnet Management Agent (SMA)**
- **PCI**
- **PCI Controller**
- **Peripheral Controller**
- **General Purpose I/O**
- **Non-blocking Crossbar Switch and Advanced Scheduling Engine**
- **InfiniBridge™ MT21108**
- **IB Port**
- **Channel Adapter**
- **IB Port**
- **JTAG**
- **Boundary Scan**

InfiniBand Link Interface
InfiniBand Port Logic

- Only serial interface defined by InfiniBand TA
 - SerDes use Parallel interface interface to ASIC
 - Point to point, 125MHz, source synchronous, DDR
 - SSTL2
 - 10 pins + clock and reference voltage in each direction
InfiniBand Switch

Layer 2 Forwarding

- Decode Incoming Packet Header (LRH) to get DLID and SL
- Lookup destination port in FDB (Forwarding Database)
- Lookup VL from SL
- Output scheduler decides priority based on VL and integrity checks
InfiniBand Switch (cont.)
InfiniBridge™ Transport Engine Block Diagram

PCI 64b/66 MHZ

PCI Target
Packet Buffering
PCI Master

Transport Engine Target
Channel Lookup Table

Transport Engine Master
Channel Lookup Table

Transport DMA Engines

Non-Blocking Full Wire Speed Switch

Link Layer Controller

150KB Distributed Link Buffering

InfiniRisc™ Embedded RISC Processor

Four 1X links may be optionally bonded together to form a 4X (10Gb/s) Link

Mellanox Technologies, Inc.
InfiniBridge™ Transport Protocol Engine

DMA engine supports up to 16M channels and able to sustain more than 100K I/O Ops/s. Number of concurrent I/O ops limited by external memory.
InfiniPCI™ Technology

- Transparent PCI to PCI Bridging over standard InfiniBand Fabrics
- Functions with existing OS, BIOS, PCI software and hardware without modifications
- Use PCI semantics to create multi-segment backplanes, fully switched chassis, and multi-chassis fabrics
InfiniPCI™ System View

PCI Target

InfiniBand Attributes:
• Layer 2 Address (LID)
• Connection Number: (WQPN)
• Opcode: RDMA RD/WR, Send
• Address: VA = f(PCIADDRESS)

PCI Master

PCI Attributes:
• CMD: Mem, IO, Config, Read/Write
• ReadLine, ReadMultiple
• Interrupts

PCI Bus

Address

Claim the Cycle

CMD

PCI Target Segment Header

PCI Target Channel Lookup Table

InfiniBand Switch Fabric

PCI Master Channel Lookup Table

WQPN

CA
Chassis-to-Chassis Interconnect

Card Configured for Primary P2P Mode

Cards Configured for Secondary P2P Mode

6U InfiniBand Channel Adapter Card

InfiniBand links can be direct or through switched fabric using copper or fiber
Remote I/O Application

InfiniBand NIC Configured for Primary P2P Mode

4X InfiniBand Links

InfiniBand Switch

Compact PCI Chassis

PCI

CPCI Storage Chassis

64 bit 66 Mhz PCI

Cards Configured for Secondary P2P Mode
Summary

InfiniBridge™ Architecture
- Integrated 45 Gb/s non blocking switch and channel adapter
- Reliable transport in hardware
- Transport Protocol Engines support up to 16M connections with concurrency
- InfiniRISC™ embedded RISC processor

Virtual fabrics enable multi-protocol networks

InfiniPCI™ technology implements transparent PCI bridging