CMOS Crossbar

Ting Wu, Chi-Ying Tsui, Mounir Hamdi

Hong Kong University of Science & Technology
Hong Kong SAR, China
OUTLINE

• Motivations
• Problems of Designing Large Crossbar
• Our Approach - Pipelined MUX Core
• Interface Link and Clocking Design
• Conclusions
Motivations

- Advances in fiber optic link technology and WDM have made raw bandwidth in abundance
- Switches/Routers are replacing the transmission link as the bottleneck of the network
- Switches/Routers with high speed (OC-192, 10Gb/s) and large number of I/O ports (128*128 or 256*256) are becoming a necessity
- Key issues for designing high speed router:
 - Switching Fabric Interconnects
 - Queuing Schemes
 - Arbiters
 - Multicast
Fabric Interconnects: Crossbar

- Crossbar (Crosspoint) Fabric is becoming the preferable interconnect fabric for high speed and scalable switching.
- It has been proven that crossbar (even input-queued) can have as high throughput as any switch.
- A crossbar inherently supports multicast efficiently.
- QoS can be implemented reasonably easy.
- The key challenge is the scalability for high line rate and large number of ports.
- CMOS technology can achieve high density and low cost.
Architecture of the CMOS Crossbar Switch

- Crossbar Switch Core – fulfills the switch/router function
- Controller – configures the crossbar core switching
- High speed data link – communicates between switch fabric and line card
- PLL – provides on-chip precise clock
Two Approaches to Build the Core

- **X-Y Based Crossbar**
 - Scalability: N^2
 - Speed: limited by Cap at input and output lines
 - Control: N^2 bits

- **MUX Based Crossbar**
 - Scalability: N^2
 - Speed: limited by Cap only at input line
 - Control: $N \cdot \log_2 N$ bits
Problems of Designing Large Crossbar Switch

- The switch core scales to N^2
- Design complexity increases
- The performance requirement increases much faster than that can be achieved through CMOS technology scaling
- The throughput can be satisfied by using multiple bit-slices (e.g. 8) of the core, however, the core size increases by 8 times
- Wire delay is also substantial in high performance chip
Our Approach – Pipelined MUX Crossbar Digital Core

- Digital MUX tree based design technique guarantees the high performance as well as the low design complexity.
- In order to integrate large crossbar switch, only 2 bit-slices are embedded in the digital core instead of 8 (60%+ area saving).
- 1GHz digital core is demanded for the 2 Gb/s interface, the MUX tree can be pipelined to fulfill the requirement.
- Additional pipeline stage is added to drive long wire.
SDFF embedded with MUX

- High performance Semi-Dynamic Flip-Flop (SDFF) is used [Klass98, Stojanovic et.al. 99]
 - One of the fastest Flip-Flops due to negative setup time
 - Little overhead for embedding with MUX function
• The pipeline of the 256-to-1 MUX can be partitioned as
 – Natural: 16-to-1 MUX in 1st stage; 16-to-1 MUX in 2nd stage
 – Balanced: 8-to-1 MUX in 1st stage; 32-to-1 MUX 2nd stage
Driving Long Wire – Adding Repeater cannot Satisfy the 1GHz Requirement

- The 1st stage is critical due to the large capacitor at the input line
- Distributed R-C wire model is employed
- Repeater can be inserted to reduce the wire delay
- For 256 ports, even inserting the optimal size and number of repeater, the delay is still larger than 1ns
Adding One Pipeline Stage to Drive Long Wire

- Add one more stage for driving the long wire by inserting a Flip-Flop
- The whole 256*256 crossbar is divided into 4 128*128 -- sub-crossbar, so that the input line only need to drive 128 cells instead of 256
- For 128 ports, sub-ns delay time is achievable
The 256*256 crossbar consists of 4 sub-crossbars (128*128) running at 1GHz frequency.

- 2 pipeline stages in each sub-crossbar
- 2 bit-slices are embedded matching with 2Gb/s data link
3-stages Pipelined MUX Crossbar Timing Diagram

- In sub-crossbar 0, inputs [0:127] are switching in the 1st and 2nd stages, while in sub-crossbar 3, inputs [128:255] are switching in the 2nd and 3rd stages.
- Finally, the two groups of outputs are fed into SDFF\textsubscript{embedded} with 2-to-1 MUX to complete the 256-to-1 MUX action.

HKUST
The Sub-Crossbar Circuits Simulation Results

<table>
<thead>
<tr>
<th>Technology</th>
<th>TSMC 0.25μm SCN5M Deep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layout size</td>
<td>5.9 mm * 3.1 mm</td>
</tr>
<tr>
<td>Sub-crossbar No.</td>
<td>Sub-crossbar0</td>
</tr>
<tr>
<td></td>
<td>Sub-crossbar3</td>
</tr>
<tr>
<td>Post layout simulation 1st stage</td>
<td>959 ps</td>
</tr>
<tr>
<td>Post layout simulation 2nd stage</td>
<td>866 ps</td>
</tr>
<tr>
<td>Post layout simulation 3rd stage</td>
<td>236 ps</td>
</tr>
</tbody>
</table>
Control Circuits

- Control bits are used to configure the corresponding MUX in the crossbar pipeline in the correct timing stage.
- For saving the pin counts, the control inputs are embedded within the data inputs, each incoming frame packet includes one byte control word and 64 bits of data.
- The timing constraints can be satisfied by careful pipelining the control path.
Control Circuits (cont’d)

- **Bang-Bang PD:** samples the 2Gb/s inputs, converts to 2 bits, each at 1Gb/s
- **Re-synchronization:** synchronizes each input signal to the main clock
- **DMUX:** demultiplexes signal to data & control bits
- **Counter:** counts 4/36 and controls the DMUX
Full Crossbar Core
Layout and Specification

- Technology: TSMC 0.25\(\mu\)m SCN5M Deep, 5 Layer Metal
- Layout size: 14 mm\(^*\)8 mm
- Transistor counts: 2000k
- Supply voltage: 2.5v
- Clock frequency: 1GHz
- Power: 40W

Full 256*256 crossbar core with 2 bit-slices
Interface Link and Clocking Design

- The dual loop delay locked loop (DLL) design technique is adopted in the data link for data and clock recovery.
- The main analog DLL generates multiple clock phases for the interpolation in the full digital periphery loop.
- A half rate bang-bang phase detector is used in the periphery loop to sample the 2Gb/s incoming signal by using 1GHz clock.
- A 3rd loop, an analog PLL, provides the 1GHz on-chip clock.
The system clock is at 250MHz, PLL provides the precise 1GHz clock for the whole chip.

Several periphery loops share one analog DLL.
Conclusions

• A 2Gb/s 256*256 CMOS Crossbar Switch Core is achievable with current process technology
• Significant area saving is obtained by using only 2 bit-slices in the crossbar switch core
• 3-stages pipelined MUX circuit is proposed to decrease the cycle time to less than 1ns
• Post layout simulation results show that each stage can run at a clock rate higher than 1GHz
• Full 256*256 crossbar core has been laid out to demonstrate the design
• PLL & dual DLL circuits have been designed for the clocking and high speed link in the whole chip