The RM9000 Family of Integrated Multiprocessor Devices

Paul Cobb, PMC-Sierra Inc.
Technical Advisor, MPD
Hot Chips 14: August 2002
Outline

• What is an integrated multiprocessor?
• Why take integration to this level?
• Application in networking systems
• Internals: caches, interconnect
• Application & performance examples
• RM9000x2 statistics
• Future directions
• Summary
RM9000 Device Resources

• Multiple 64-bit MIPS CPUs
 – Including private 2-level cache hierarchy.

• Memory subsystems
 – Control external devices, e.g. SDRAMs
 – Internal SRAM for fast local storage.

• I/O controllers
 – With dedicated and/or shared DMA engines.

• Internal interconnect
 – Move data efficiently between other resources.
RM9000x2

- **Interface controllers:**
 - HyperTransport: 8 bits/dir, 500 MHz DDR
 - SysAD: 64 bits, 200 MHz
 - Compatibility with existing ASICs etc.
 - SDRAM: 64 bits, 200 MHz DDR

- **Processor complex:**
 - Dual 64-bit CPUs @ 1 GHz;
 - 2-way superscalar (appropriate for embedded)
 - 16 KB L1-I, L1-D; 256 KB L2; full MMU and FPU

- **Internal resources:**
 - 4-channel DMA controller; 8 KB Scratch RAM
RM9000x2 Block Diagram

- EJTAG Debug Interface
- Scratch RAM
- 4-channel DMA
- CPU 0 L1 L2
- CPU Arbiter
- CPU 1 L1 L2
- Internal Interconnect
- Low-speed peripheral interface
- SysAD Bus Interface
- SDRAM Interface
- Hyper-Transport Interface

The RM9000 Family of Integrated Multiprocessor Devices
Why take integration to this level?

Networking subsystems must typically:

• Handle aggregate I/O bandwidths on the order of Gbits/sec.

• Make efficient use of CPU resources:
 – Run complex routing/topology algorithms.
 – Accumulate diagnostic and accounting info.

• Exploit the flexibility of software:
 – Reuse same hardware in multiple products.
 – Track evolving standards with field upgrades.
Application in Networking Systems

• RM9000 devices can serve in a wide variety of processing roles:
 – Preserve and extend the networking industry’s substantial investment in MIPS software.

• Fully general-purpose CPUs
 – Well suited to heavy computational demands of control-plane and management tasks.
 – Familiar programming model and software tools.

• Tightly integrated Memory and I/O
 – Provide appropriate latency and bandwidth for use directly in data-plane processing.
Basic Packet Processing

Rx DMA writes incoming packet to memory.

CPU processes packet in memory.

Tx DMA reads outgoing packet from memory.
Limitations of basic implementation

• Memory subsystems sees combined demands of ALL traffic types:
 – Packet movement (store & forward)
 – CPU traffic (forwarding lookups, etc.)
 – Descriptor access by CPU & DMAs, for buffer memory management.

• CPU memory access not efficient
 – Commodity memory technologies are not well suited to typical access patterns.
 – Arbitration delays add to memory device latency.
Cache Hierarchy

Need to bring incoming packet headers as close as possible to the CPU(s):

- Transparent redirection of incoming data to L2 cache of one or both CPUs:
 - Auto deposit: first N bytes (packet header).
 - Live deposit: entire DMA or HT transfer block.

- Fast Packet Cache:
 - Refill requested line to L1 Data cache, leaving L2 cache unmodified.
 - Preserves longer-lived info in L2.
Internal Data Movement

- Internal transfers pass through a centralized pool of shared buffers.
- Runs at up to half the CPU pipeline clock rate (currently 500 MHz).
- Multiple ports (currently 5).
- 64 bits per clock edge per port.
- All ports can transfer concurrently.
- Peak bandwidth: 40 Gbits/sec/port.
Enhancing the Cache Coherency

• Maintained in hardware:
 – Across CPU subsystems
 – On I/O transfers
 – Selectively enabled under software control.

• Shadow tags at L2 caches minimize overhead at CPU pipelines.

• DMA and external agents move information directly to/from L2 caches
 – Minimizes CPU exposure to Memory and I/O latency.
Data Movement Example #1

Network ports

Network Interface Controllers

External Memory Subsystem

Packet store & forward traffic

Packet header traffic

I/O Controllers

L2 cache
CPU 0 subsy

L2 cache
CPU 1 subsy

Fabric Interface Manager

Descriptor access traffic

Other cards, via system fabric

Network ports

Ingress traffic

Egress traffic

Scratch RAM

RM9000 Device
Data Movement Example #2

Goal: maximize bandwidth, with strongly sequential reference patterns

Packet Memory

Goal: minimize latency, with weak locality of reference

Table Memory

Network Interface & Memory Controller

Bulk packet store & forward traffic

Forwarding table lookups, stats updates, etc.

Packet header & descriptor traffic

Networks ports

CPU

L2

RM9000x2

The RM9000 Family of Integrated Multiprocessor Devices
Performance Example

• Basic packet processing benchmark
 – IPv4 forwarding per RFC1812
 – No IP options

• Maximize internal transfer efficiency:
 – HT auto-deposits headers to L2
 – DMA moves modified headers from L2
 – Hold descriptors in internal Scratch RAM

• Sustained forwarding rate: 3.3 Mpps
 – 64 Byte packets
 – Performance directly observed in RTL simulation.
RM9000x2 Stats

• Technology:
 – 0.13 um (drawn)
 – 8 level metal (1 for bumps, 2 for power planes)
 – 672 pin FCBGA

• Die usage:
 – ~50M transistors total: ~20M per CPU subsys.
 – CPU subsystems, incl. caches: ~56% of die.

• Status:
 – First silicon June ’02: now operational in lab.
 – Sampling: Aug ’02; Production estimated 1Q03
RM9000x2 Die Image
Multi-Processing Examples

• Ex #1: Simple software partitioning:
 – One CPU handles all control and management operations.
 – Other CPU can be dedicated to running highly tuned low-level packet processing code.
 – Greatly simplifies scheduling issues.

• Ex #2: Pooled CPUs for high-touch applications:
 – Use hardware cache-coherency for efficient sharing of data structures among CPUs.
 – Distribute computationally expensive forms of processing among multiple CPUs.
Future Directions

Extend the range of on-chip functions:

• I/O and Memory controllers:
 – Track evolving industry standards.
 – Match growing application demands.

• CPU subsystems
 – Vary number & attributes of CPU subsystems to serve other markets, e.g. digital imaging.

• Other peripherals
 – Enhanced DMA, local storage; application-specific accelerators.
Summary

RM9000 device family demonstrates that integrated devices can:

- Open up new roles for general-purpose processors within networking systems.
- Help balance low latency against high bandwidth, to suit the system workload.
- Deliver unprecedented performance and flexibility, within an appropriate power budget.