Au1X00

Video decode for less than 1W
Agenda

- Demonstration
- Three main topics:
 - The Au1100™ Processor (and family)
 - Video performance in Au1X00 systems
 - System performance issues in embedded systems
 - Video performance on Au1X00 systems
 - Power dissipation while displaying video
- Summary and conclusions
Video demonstration

- What you just saw:
 - MI-2 movie trailer
 - Encoded at:
 - MPEG1 encode
 - 400 x 200 window size
 - 1100 kbps bit rate
 - 24 Frames per Second
 - Playback setup
 - MediaPlayer™ video player
 - WindowsCE™ OS
 - Played on
 - Pb1100 development platform
 - Au1100
 - 0.13um
 - 396MHz
 - <=500mW power
Au1100™ Processor

The first 0.13um AMD SOC

- **Alchemy Au1 Core**
 - 333, 400, and 500 MHz core options
- **LCD Controller**
 - Unified Memory Architecture
 - All panel types, up to 16-bit color
 - Hardware rotate (QVGA)
- **2.5 Volt/3.3Volt Mobile SDRAM Support**
- **2 x Secure Digital / SDIO Interfaces**
- **Ethernet MAC**
- 3 UARTs
- **USB Host and Device**
- **Fast IrDA**
- **GPIO (TBD)**
- **AC’97**
- **I2S**
- **TSMC 0.13μ Process**
- **Low Power Consumption**
 - 1.0 - 1.2V Core
 - 3.3 V I/O
 - 250mW @ 400MHz
- **Package**
 - 399 Pin PBGA, 17 x 17 mm²
Au1X00 SOC comparison

![Diagram of Au1X00 SOC comparison]

- **SDRAM Controller**
- **Enhanced MIPS32™ CPU Core**
 - 16KB Instruction Cache
 - Bus Unit
 - 16KB Data Cache
- **32x16 MAC**
- **SRAM Controller**
 - RTC & TOY
 - Power Mgmt
 - Interrupt Controller
 - AC ‘97 Controller
 - DMA Controller
- **USB-Device**
- **USB-Host**
- **EJTAG**

Au1100™
- 333,400,500MHz
- 0.13u Technology
- 1.0-1.2V Core, 2.5V I/O
- 250mW @ 400MHz (target)
- 399 pin LFBGA (17mm²), 0.8mm pitch

Au1500™
- 333,400,500MHz
- 0.18u Technology
- 1.5-1.8V Core, 3.3V I/O
- 700mW @ 400MHz
- 424 pin LFBGA (19mm²), 0.8mm pitch

Au1000™
- 266,400,500MHz
- 0.18u Technology
- 1.5-1.8V Core, 3.3V I/O
- 500mW @ 400MHz
- 324 pin LFBGA (23mm²), 1mm pitch
System-level Video Performance Issues

- Computation requirements of video decode (MPEG4/1)
- Memory system bandwidth utilization
- Performance/overhead of networking solution
- Integration/synchronization of audio and video outputs

- Can video decode be done in software on a <1W power budget?
Computational Components of Video Decode

- We studied 2 of the dominant components in MPEG4 video decode
 - Inverse Discrete Cosine Transform: up to 40%
 - Color Space Conversion: up to 25%

- Performance measured by two benchmark tests
 - IDCT loop: 81000 block transforms
 - CSC loop: 81000 YCbCr->RGB 8x8 block conversions
 - Results should be dominated by CPU, not memory system.
Projected Decode Performance

- Performance measurements/projections
 - Projected frames per second (FPS) are approximate

<table>
<thead>
<tr>
<th></th>
<th>CPU Cycles per CSC</th>
<th>CPU Cycles per IDCT</th>
<th>Projected FPS, 320x240, 504MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au1500</td>
<td>~5050</td>
<td>~2675</td>
<td>26</td>
</tr>
</tbody>
</table>

- Benchmark measurements project full frame rate decode
System Performance Issues
Bus/Memory Bandwidth Utilization

• Bandwidth to/from frame buffer is valuable resource
 – Unified/Split memory architectures have very different performance characteristics

• There may be many consumers of bandwidth
 – Ethernet, video decode, frame buffer updates, audio, GUI overhead, USB mouse/keyboard input
 – Bus arbitration fairness may be an issue for satisfying real-time requirements of video display
 • The AuSB protocol supports shifting bandwidth allocation towards high-priority consumers.
Au1X00 Video Solution Bandwidths

- The effective bandwidth to the frame buffer varies widely depending on the video solution.

- **Au1000™ Processor:**
 - Glueless interface to inexpensive, low-power Epson controllers
 - 16-bit, 25-50MHz interface

- **Au1500™ Processor:**
 - Any PCI-based graphics solution
 - Example: ATI Xpert 98
 - 33MHz, 32-bit PCI interface

- **Au1100™ Processor:**
 - Integrated LCD controller
 - Full speed read/write access to SDRAM based frame buffer
Video Display System Bus Bandwidth Requirements

- For video decode, bandwidth usage will be dependent on the frame buffer update rate.
 - For example: at 30FPS, 16-bit color the bus bandwidth required is:

<table>
<thead>
<tr>
<th>Resolution</th>
<th>FB write (MB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCIF (176x144)</td>
<td>1.5</td>
</tr>
<tr>
<td>SIF (320x240)</td>
<td>4.6</td>
</tr>
<tr>
<td>CIF (352x288)</td>
<td>6.1</td>
</tr>
</tbody>
</table>

- The complete decode operation will use 1.5-3X this much memory bandwidth depending on the details of the encoding scheme used.

- Available Au1X000 FB bandwidth:
 - Au1000™: good for lower end of the performance range
 - Au1500™ and Au1100™: cover full spectrum of decode performance
Memory System Impact

- Memory system dependence
 - The CPU-dominated benchmarks show a second-order dependence on the memory system.

<table>
<thead>
<tr>
<th></th>
<th>CPU Cycles per CSC</th>
<th>CPU Cycles per IDCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au1500, 396MHz, PCI graphics</td>
<td>~5050</td>
<td>~2675</td>
</tr>
<tr>
<td>Au1100, 396MHz, QVGA panel</td>
<td>~5500</td>
<td>~2850</td>
</tr>
<tr>
<td>Au1100, 396MHz, VGA panel</td>
<td>~5975</td>
<td>~3150</td>
</tr>
</tbody>
</table>
Video Display System Bus Bandwidth

- With a UMA display controller like the Au1100, a dominant bandwidth consumer is screen refresh.
 - Screen refresh accesses frame buffer at full SDRAM rate

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Refresh BW (MB/s)</th>
<th>% of AuSB BW w/ 100MHz SDRAM @ typical access rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>QVGA (320x240)</td>
<td>11.7</td>
<td>5.6</td>
</tr>
<tr>
<td>VGA (640x480)</td>
<td>46.9</td>
<td>22.3</td>
</tr>
<tr>
<td>SVGA (800x600)</td>
<td>73.2</td>
<td>34.8</td>
</tr>
<tr>
<td>XGA (1024x768)</td>
<td>120.0</td>
<td>57.0</td>
</tr>
</tbody>
</table>
Power Management

• The Au1X00 systems are very capable of supporting quality video decode solutions – what about power?

• The keys to power dissipation
 – Managing power in both Active and Idle processor states
 – Leveraging technological developments
 – High frequency operation allows more time spent in Idle
Au1X00: Managing Power

- Au1X00 family is designed for low-power operation
 - Custom circuit design allows high-speed operation at low voltage
 - Very aggressive use of clock gating

- At the system level the Au1X00 solutions allow:
 - Multiple frequency scaling options
 - Support for static, semi-static and dynamic frequency changes.
 - Dynamic Voltage scaling
 - Power supply can track the operating frequency:
 - 500MHz/1.8V, 400MHz/1.4V, <333MHz/1.2V

- Typical Au1X00 Active:Idle power ratio: 3-4X
Technology Enhancements

- Power savings from moving to 0.13um and Mobile SDRAM
 - Core nominal operating voltage
 - 1.4V -> 1.0V reduces core power by ~2X
 - Mobile SDRAM
 - 3.3V -> 2.5V reduces I/O power by ~1.75X
 - The new SDRAMs also have additional power saving modes
Au1X00: Idle Time

- **Active:Idle ratios while playing video clips**

<table>
<thead>
<tr>
<th>System</th>
<th>Video clip encoding</th>
<th>% idle</th>
<th>Chip power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au1500, ATI PCI card</td>
<td>Low complexity</td>
<td>85-90</td>
<td><300mW</td>
</tr>
<tr>
<td>Au1500, EPSON controller</td>
<td>Low complexity</td>
<td>45-50</td>
<td>500mW</td>
</tr>
<tr>
<td>Au1500, ATI PCI card</td>
<td>High complexity movie trailer</td>
<td>30-35</td>
<td>600mW</td>
</tr>
</tbody>
</table>

- High performance design reduces system power
Summary

- Good video performance does not require high power
- Demonstrated full frame rate video decode at <0.5W
- The Au1X00 family allows tuning system performance and power to meet a range of applications.
Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof, Au1000, Au1100 and Au1500 are trademarks of Advanced Micro Devices, Inc. MIPS32 is a trademark of MIPS Technologies, Inc. Other product names used in this presentation are for identification purposes only and may be trademarks of their respective companies.