An Asynchronous SoC Interconnect

Andrew Lines
lines@fulcrummicro.com
Agenda

• Introduction to Fulcrum

• Asynchronous Technology Overview

• Asynchronous SoC Interconnect

• F1 Project Characterization Results
Asynchronous Design Styles

• **Fundamental Mode (1950s)**
 - Predates invention of the clock (combinational logic with feedback)

• **Bundled Data (aka Micro-pipelines) (1989)**
 - Proposed by Ivan Sutherland at Sun Labs
 - Synchronous style datapath, asynchronous control

• **No-Holds-Barred Asynchronous (1995-present)**
 - Self timed with aggressive timing assumptions
 - Mixture of strategies; not a uniform methodology

• **Delay Insensitive (1960s, 1985-1994)**
 - Early MIT and later Caltech research
 - Dynamic logic, similar number of N and P transistors, separate latches

• **Integrated Pipelining (1994-present)**
 - Developed at Caltech by Fulcrum's founders
 - Fast Delay-Insensitive style using domino logic without latches
Dual-Rail Four-Phase Handshake

A raises Data0 or Data1
B raises Acknowledge
Dual-Rail Four-Phase Handshake

1. A raises Data0 or Data1
2. B raises Acknowledge
3. A lowers Data0 and Data1
Dual-Rail Four-Phase Handshake

1. A raises Data0 or Data1
2. B raises Acknowledge
3. A lowers Data0 and Data1
4. B lowers Acknowledge
Asynchronous Pipeline

Circuit A

Domino Logic

Control

Input Completion Detection

Circuit B

Domino Logic

Control

Circuit C

Domino Logic

Control

Output Completion Detection

2 transition latency per stage

18 transition cycle time
Fulcrum Asynchronous Advantages

- High frequency
- Low latency
- Inherently low power, no wasted transitions (perfect clock gating)
- Temperature, voltage, process, delay robustness
- Greatly reduced EMI noise
- No clock distribution
- Built in latches
- Fine-grain flow control everywhere
- Easy integration of modules at different speeds
(Perceived) Disadvantages

- **Limited commercial tool support**
 - Migrating to commercial tools; partnered with tools providers

- **Additional wires**
 - Feasible in modern fabrication processes

- **Area overhead**
 - Comparable to high-speed synchronous overhead
 - Excellent throughput/area
SoC Interconnect Functional Overview

- Crossbar structure
- 16 full-duplex ports
 - 36 bits wide
- > 16 Gbps/port (TSMC 0.18G)
 - > ½ Tbps aggregate bandwidth
- Non-blocking architecture
- Peer to peer communication
- Arbitrary-length bursts
- Includes flow control and arbitration
SoC Interconnect Architecture Overview

- Data (36)
- Tail (1)
- To (4)
- Repeat
- Input Control
- Output Control (Arbitration)
- Request
- From (4)
- Crossbar

16 bit connections
SoC Interconnect Burst Format

Incoming From Source

- **Data**: 36 bit
- **Tail**: 1 bit
- **Control**: 4 bit

Outgoing To Destination

Source Module

Crossbar

Destination Module
SoC Interconnect Architectural Features

• Ordering relationships
 - Bursts from A to B remain ordered
 - Producer/consumer ordering satisfied
 - Split transactions supported

• Fair arbitration
 - Work-preserving round robin
 - First come first served in light traffic
 - Bursts transmitted atomically

• Bus-like behavior
 - Significantly higher aggregate bandwidth
 - Much less contention
Synchronous Interfacing

- Channels synchronized with low-latency A2S and S2A converters
 - Synchronous side: request/grant FIFO protocol
 - Asynchronous side: four phase delay-insensitive handshake protocol

- Worst-case latency between two clock domains through crossbar:

 Source Module → S2A → Crossbar → A2S → Destination Module

 <1ns <2ns <1ns <1 clock period

 = <4ns + <1 destination module clock period
Protocol Examples

• **SoC Load/Store**
 - Use first word of burst for address/length header
 - Attach N words of data (with error protection) for Store
 - Target module sends Load completion back with header and N words of data (with error protection)

• **SoC Send/Interrupt/Signal**
 - Message passing, direct memory copies
 - In-band signals or interrupts
 - In-band cache coherence protocol

• **Switch core**
 - Derive destination port from header word

• **PCI tunneling**
 - 36-bit datapath
 - Split transactions
 - Bus-style ordering
SoC Interconnect Generic Application

- **Crossbar**: Includes control & arbitration
- **Repeat buffer**: Maintains high throughput; inserted as needed
- **Sync converter**: Converts to/from a synchronous domain; includes jitter buffer and scan chain
- **Channel**: Asynchronous channel with built-in flow control
- **Asynchronous block**
- **Synchronous block**
F1 Project

System Elements:
- SoC Interconnect (16-port crossbar)
 - >16 Gbps/port, full duplex
 - >½ Tbps aggregate bandwidth
- DDR SDRAM controller
- Test engine interfaces
- PCI controller interface

- 5 man years
- 450MHz (TSMC 0.18 G)
- 5.5 M transistors
- 200 unique leaf cells
- 50mm²
- Crossbar: 5.5mm²
F1 Chip

- SSRAM
- SSRAM
- TE
- xGen - xLoop
- DDR SDRAM
- System Control Module
- Clock
- Crossbar (5.5mm²)
- PCI
F1 Frequency and Power vs. Voltage

One-way Burst Transfer (per link)

![Graph showing the relationship between frequency, power, and voltage for F1.
- Frequency (MHz) is shown on the y-axis.
- Voltage is shown on the x-axis.
- Power (mW) is shown on the right y-axis.
- The graph includes lines for frequency and power, with each line representing different voltage levels.

Fulcrum Confidential
F1 Frequency vs. Power

One-way Burst Transfer (per link)
Summary Analysis (TSMC 0.18 G)

• High throughput
 - >16 Gbps/port, full duplex (>1/2 Tbps aggregate bandwidth)

• Very high burst rate
 - 225M bursts/second/port (3.6B aggregate bursts/second)

• Very low latency
 - Crossbar latency: <2ns
 - Module-to-module latency: <4ns + <1 destination module clock period

• Modest power profile
 - Scales linearly with usage (no standby power)
 - 4W max at 260 Gbps transfer rate (much less in typical operation)

• Small footprint
 - 5.5mm² (and shrinking)
Thank You!

Andrew Lines
Founder, CTO
lines@fulcrummicro.com

818.871.8100
www.fulcrummicro.com

26775 Malibu Hills Road
Suite 200
Calabasas Hills, CA 91301

“A group of engineers wants to turn the microprocessor world on its head by doing the unthinkable: tossing out the clock and letting the signals move about unencumbered. For those designers, inspired by research conducted at Caltech, clocks are for wimps.”

Anthony Cataldo, EE

Times, May 28, 2002