IBM PowerPRS™

A Scalable Switch Fabric to Multi-Terabit: Architecture and Challenges

July, 2002

Speaker: François Le Maut
Outline

- Introduction
- General Architecture
- Flow Control
- Multicast
- Redundancy
- Physical Constraints
 - I/O Constraints
 - Integrated SERDES
Today's Switching Challenge

A Versatile Switch Fabric to Meet Bandwidth Demand and Requirements at Nodes of Communications Networks Handling Multi-Applications on a Single Infrastructure:

- Real-Time Applications such as Voice and Video-conferencing
 - i.e., Applications Requiring a QoS (Quality of Service)
 - VoIP as well as Carrier-Class Voice Transport
- Best Effort Service
 - Data File Transfer, e.g.: E-mail

To Allow Equipment Manufacturers to Build Platforms aimed at Switching all Protocols in Common Use:

- IP, ATM, Ethernet, legacy TDM ...
An Output Queuing Shared-Memory Switch

High Performance Architecture at a Reasonable Cost:

- OQ Switch Known to be Best for Performance
 - Full Outbound Throughput
 - No Internal Blocking
- Best Buffer Memory Utilization Through Sharing of Up to 16k Packets (Q-128G)

Requires High Thruput Buffers:

- Four-ported High Speed (2 Ns Cycle) Memories implemented in IBM CMOS Cu11 Technology (Leff=0.11)
VOQ's in Queue Manager (CSI)

Common Switch Interface or CSI, is Queue Manager Companion Chip to PowerPRS (1 per IN/OUT Port):

- Holds VOQ's in Ingress CSI
 - Prevents HOL blocking
 - Allows a Per Port & Per Priority Flow-Control

- C192 is Companion Chip to PowerPRS Q-64G
Holding Traffic in Ingress CSI VOQ's

To Prevent OQ's from Overflowing, Packets are No Longer Admitted in Switch Core (for That Port) when an Output Port Congestion is Detected

- Lower Priority Packets are Held First According to a Series of Thresholds Associated to the Set of OQ's

- Priorities are Intrinsically Fully Preemptive

- e.g.: VOQ's of All Ingress CSI's are Instructed to Hold their Traffic of Pty P3 Destined for Output Port #1

Hold P3 in all VOQ's to Output #1
Hold P2 (& P3) in all VOQ's to Output #4
Distributed Hop By Hop Flow Control

If Egress Buffer Starts to Build Up, Packets May Be Denied Permission to Leave Switch Core (Sent Grant is Removed)

– On a Per Priority Basis

There is NO Centralized Scheduler

– Decisions are Made Independently in Each Component (Switch Core, Ingress & Egress Egress CSI) on the Basis of the Broadcast of Flow Control Information (In Each Packet Header)
Handling of Multicast Traffic

Is 'Built In' in PowerPRS Architecture (Output Queuing Shared-Memory Switch)

- There is a Single Copy of Packets Transmitted in Shared Memory from Ingress CSI's
- One Reference in each OQ Concerned by MC
- Packet Released when Last Copy Forwarded
 - NOT a Requirement that Copies Have to Leave Switch Core in the Same Packet Cycle (to be compared with Crossbar)
- MC Traffic is Independently Flow Controlled thru a Simple Metric
Credit Tables & Exhaustive Scheduling

Two Mechanisms to be Used with CoS (Class of Services i.e., Priorities) to Implement QoS requirements

—Credit Table
 • to Provide a Minimum BW to a CoS to Avoid Starvation in Presence of Higher Priority Traffic

—Exhaustive Scheduling
 • to Force a Higher Priority Traffic to be Processed Exhaustively Irrespective of the Credit Table Allocations
 • to Process Real-Time Traffic, i.e.: Voice
1+1 Redundancy

CSI, e.g.: C192, Can be Connected to Two Sets of PowerPRS i.e., Two Switching Planes

- Lossless Scheduled Switch-Over
- 50 ms Automatic Switch-Over in Case of Failure
- Enables Load Sharing Capability

IBM Serial Link @ 2.5 Gbps
PowerPRS Scalability

PowerPRS Architecture (i.e.: Output Queuing + Shared-Memory) Is Scalable Mainly Through the Combination of Two Mechanisms

- Shared Memory is 'Naturally' Scalable
 - Memory Can be Grown because of Technological Innovations and Lithography Progresses
 - Memory Can be Shared as Speed and Number of RAM Ports Increase

- Each Switch Module Handles only Packet Slices: a Master Module Drives Slaves Modules through a SPEX (SPeed EXpansion) Bus
 - Packets Can be Sliced Down to Packet Header Size

Up to 1 Tbps Now!
Counting Signal I/O's

To Move One Tb/s of Data IN and OUT e.g., of a 64-port OC192 (10 Gbps) Switch:

- @ 16 Gbps (1.6 Speedup Factor) per Port (IN & OUT)
 - Requires 8 Serial Link @ 2 Gbps effective (without 8B/10B Overhead)
 - $64 \times (8 + 8) = 1024$

i.e.: 1024×2.5 Gbps Serial Links per Tb/s of Data to Switch (One Differential Pair per Link)

Denser Connectors Can Handle 70 Pairs per Inch:

- About 15 Inches (37 cm) of Board Connector Required per Switched Tb/s of Data

Faster Serial Links (10 Gbps) Required for Multi Tb/s Switches
512GBPS PowerPRS Reference Switch Board

Fully Self Testable (100% BW) from SWICC Interface