AMD Opteron™ Shared Memory
MP Systems
Ardsher Ahmed
Pat Conway
Bill Hughes
Fred Weber
Agenda

- Glueless MP systems
- MP system configurations
- Cache coherence protocol
- 2-, 4-, and 8-way MP system topologies
- Beyond 8-way MP systems
AMD Opteron™ Processor Architecture

HT = HyperTransport™ technology

5.3 GB/s
128-bit

3.2 GB/s per direction
@ 1600 MHz Data Rate

3.2 GB/s per direction
@ 1600 MHz Data Rate

3.2 GB/s per direction
@ 1600 MHz Data Rate
Glueless MP System

HT = HyperTransport™ technology
MP Architecture

• **Programming model of memory is effectively SMP**
 – Physical address space is flat and fully coherent
 – Far to near memory latency ratio in a 4P system is designed to be < 1.4
 – Latency difference between remote and local memory is comparable to the difference between a DRAM page hit and a DRAM page conflict
 – DRAM locations can be contiguous or interleaved
 – No processor affinity or NUMA tuning required

• **MP support designed in from the beginning**
 – Lower overall chip count results in outstanding system reliability
 – Memory Controller and XBAR operate at the processor frequency
 – Memory subsystem scale with frequency improvements
• **Integrated Memory Controller**
 – 333 MHz 128-bit DRAM interface with up to 8 registered DIMMs
 – High-bandwidth (5.3 GB/s peak) and low-latency memory access
 – Snoop throughput scales with Processor frequency
 – Broadcast cache coherence protocol
 • Avoids serialization delay of directory based systems
 • Snooping the processors caches is overlapped with DRAM access
HyperTransport™ Technology

• **Screaming I/O for chip-to-chip communication**
 – High bandwidth
 – Point-to-point links
 – Split transaction and full duplex
 – Differential Signaling
 – Tunneling capability

• **Enables scalable 2-8 processor Cache-Coherent MP systems**
 – Glueless MP

• **HyperTransport™ Links**
 – Up to three 16-bit links (3.2 GB/s per direction)
 – Reduced pin count compared to the typical Bus based systems
 – Compatible with high-volume PC board infrastructure
 – Each can be:
 • cHT: coherent (Processor-to-Processor) link or,
 • HT: non-coherent (Processor-to-I/O) link
 – For more info see: http://www.HyperTransport.org/
High-Performance Workstation Implementation

AMD-8151™ HyperTransport™ AGP3.0 Graphics Tunnel

AMD Opteron™

32bits @ 533Mhz

AGP 3.0

AMD-8131™ HyperTransport™ PCI-X Tunnel

6.4GB/s coherent HyperTransport

AMD-8111™ HyperTransport™ I/O Hub

Legacy PCI

32bits @ 33Mhz

64bits @ 133Mhz

6.4GB/s HyperTransport

PCI-X Hot Plug

64bits @ 133Mhz

Ethernet

1000 BaseT

Gbit Ethernet

U320 SCSI

800MB/s HyperTransport

PCI-X

200-333MHz 144-Bit Reg DDR

144-Bit Reg DDR

AMD Opteron™

64bits @ 133Mhz

Ethernet

USB 2.0

AC'97

EIDE

SM Bus

LPC

FLASH

SIO

SM Bus
4-Way Server Implementation
4P System — Board Layout
8-Way Implementation
Local vs. Remote memory access

- Local Memory Access (0-hop)
- Remote1 Memory Access (1-hop)
- Remote2 Memory Access (2-hops)
Cache Coherence Protocol
Read Transaction Example

Step 1

P0 -> Memory 0 -> P2

P1 -> Memory 1 -> P3

Read Cache Line

P0 -> Memory 2

P1 -> Memory 3

P2

P3
Cache Coherence Protocol
Read Transaction Example

Step 2

Read Cache Line
Cache Coherence Protocol
Read Transaction Example

Step 3

Memory 0

Read Cache Line

Snoop Request P0

P0

Memory 1

Snoop Request P1

P1

Snoop Request P2

P2

Memory 2

P3

Memory 3
Cache Coherence Protocol
Read Transaction Example

Step 4

Snoop Response P0

Snoop Request P3
Cache Coherence Protocol
Read Transaction Example

Step 5

Read Response M0

P0

Memory 0

P1

Memory 1

P2

Snoop Response P0

Snoop Response P2

P3

Memory 2

Memory 3
Cache Coherence Protocol
Read Transaction Example

Step 6

Memory 0

Read Response M0

Memory 1

Snoop Response 1

P0

P1

P2

P3

Memory 2

Memory 3
Cache Coherence Protocol
Read Transaction Example

Step 7

P0
P1
P2
P3

Memory 0
Memory 1
Memory 2
Memory 3

Read Response M0
Cache Coherence Protocol
Read Transaction Example

Step 8
Cache Coherence Protocol
Read Transaction Example

Step 9

Source Done to M0
Cache Coherence Protocol
Read Transaction Example

Step 10

Source Done to M0

Memory 0
P0
P1
P2
P3
Memory 1
Memory 2
Memory 3
2-way System Topology

- System parameters
 - 16 DIMMs (up to 32 GB using 256Mb DRAM)
 - 2 HyperTransport links available for I/O
 - Bisection-bandwidth = 6.4 GB/s
 - Diameter = 1 hop
4-way System Topology

- **System parameters**
 - 32 DIMMs (up to 64 GB using 256Mb DRAM)
 - 4 HyperTransport links available for I/O
 - Bisection-bandwidth = 12.8 GB/s
 - Average-diameter = 1.33 Hops
4-way System Topology (contd.)

- **System parameters**
 - 32 DIMMs (up to 64 GB using 256Mb DRAM)
 - 2 HyperTransport links available for I/O
 - Bisection-bandwidth = 19.2 GB/s
 - Average-diameter = 1.17 Hops
8-way System Topology

- System parameters
 - 64 DIMMs (up to 128GB using 256Mb DRAM)
 - 4 HyperTransport links available for I/O
 - Bisection-bandwidth = 25.6 GB/s
 - Average-diameter = 1.71 hops
8-way System Topology (contd.)

- **System parameters**
 - 64 DIMMs (up to 128GB using 256Mb DRAM)
 - 2 HyperTransport links available for I/O
 - Bisection-bandwidth = 32 GB/s
 - Average-diameter = 1.64 hops
Scalability Beyond 8P

- Scaling beyond 8P is enabled
 - External HyperTransport switch

- Coherent Interconnect
 - Snoop filter
 - Data caching
The Rewards of Good Plumbing

• **High Bandwidth**
 – 2P system is designed to achieve 7 GB/s aggregate memory Read bandwidth
 – 4P system is designed to achieve 10 GB/s aggregate memory Read bandwidth
 • With data spread uniformly across the nodes

• **Low Latency**
 – Average 2P unloaded latency (page hit) is designed to be < 120 ns
 – Average 4P unloaded latency (page hit) is designed to be < 140 ns
 – Latency under load increases slowly due to excess Interconnect Bandwidth
 – Latency shrinks quickly with increasing CPU clock speed and HyperTransport link speed
Trademark Attribution

AMD, the AMD Arrow Logo, AMD Opteron and combinations thereof are trademarks of Advanced Micro Devices, Inc. HyperTransport is a licensed trademark of the HyperTransport Consortium. Other product names used in this presentation are for identification purposes only and may be trademarks of their respective companies.