Broadcom WLAN Chipset for 802.11a/b/g

August 17, 2003

J. Trachewsky, A. Rofougaran, A. Behzad, T. Robinson, E. Frank

Broadcom Corporation, CA, USA
Outline

• **Transceiver Architecture**
 – Baseband IC (BCM4306)
 – .11g RFIC (BCM2050)
 – .11a RFIC (BCM2060)

• **System Measurement Results**

• **Conclusion**
Single-band MiniPCI Card

BCM2050

BCM4306
Outline

• Transceiver Architecture
 – Baseband IC (BCM4306/9)
 – .11g RFIC (BCM2050)
 – .11a RFIC (BCM2060)

• System Measurement Results

• Conclusion
DSSS/CCK PHY

- Microcoded preamble processor computes equalizer coefficients on each received frame.
 - > 170 MMACs/sec.
- 11 Mbps r.m.s. delay spread tolerance > 200 nsec.
BCM4306/9 AFE Diagram

DSSS/CCK BB
 | re-samp
 | re-samp
 | re-samp
 | MUX
 | BUF
 | 2x 8b ADC
 | 8b DAC
 | 8b DAC
 | RSSI ADC
 | PLL
 | BCM2050

OFDM BB
 | MUX
 | MUX
 | BUF
 | 2x 8b ADC
 | 8b DAC
 | 8b DAC
 | RSSI ADC
 | BCM2060

DEMUX

MUX

ADMUX

2x 8b ADC

8b DAC

8b DAC

6

DACs

switch
Outline

• Transceiver Architecture
 – Baseband IC (BCM4306)
 – .11g RFIC (BCM2050)
 – .11a RFIC (BCM2060)

• System Measurement Results

• Conclusion
BCM2050 Block Diagram
802.11b/g Transmitter Architecture

- Direct-conversion: Low-power, highly integrated
802.11b/g Receiver Architecture

- **Low-IF**: Power-hungry IF filters
- **Super-heterodyne**: Off-chip IF filters
- **Direct-conversion** is the best
Receiver Front-End

- Common-source LNA
- Gilbert-type I/Q mixers
- Active RC filters
- $S_{11}<-16$ dB, IIP3=-8 dBm

![Diagram of Receiver Front-End](image)

Normalized in-band gain, dB

5 dB/div (narrow mode)
Programmable RX Filter

Date: 9.MAY.2002 04:12:01
• 5th order Chebychev LPF with programmable bandwidth has sharp cut-off to attenuate interference

• Two independent offset cancellation loops for LPF and PGA
Built-in Radio Calibration

- Built-in calibration ensures repeatability and consistency
 - Controls the effects of process variation to achieve the highest yield on a bulk CMOS process
 - Minimizes the effects of temperature variations during operation
- Calibrates all major blocks of the radio to within 2% of target
 - Filter phase and gain characteristics
 - Gain blocks and matching between major components
 - Center Frequency
 - Does not affect the normal operation and occurs in the normal Tx to Rx switching time – within 10 μsec.
Clock Generator Architecture

- Resolves PA pulling
- Spurs attenuated by on-chip LC filters
BCM2050 Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td>4 dB typ.</td>
</tr>
<tr>
<td>Receiver IIP3 (max. gain)</td>
<td>-16 dBm typ.</td>
</tr>
<tr>
<td>Receiver IIP3 (min. gain)</td>
<td>4 dBm typ.</td>
</tr>
<tr>
<td>Transmitter output power</td>
<td>5 dBm typ.</td>
</tr>
<tr>
<td>Transmitter OIP3</td>
<td>18 dBm</td>
</tr>
<tr>
<td>Transmitter output power range</td>
<td>5 dBm to -15 dBm typ.</td>
</tr>
<tr>
<td>Transmitter EVM</td>
<td>-27 dB min. at 54 Mbps</td>
</tr>
<tr>
<td>Receive-mode current consumption</td>
<td>110 mA typ. (1.8 V)</td>
</tr>
<tr>
<td>Transmit-mode current consumption</td>
<td>80 mA typ. (1.8 V)</td>
</tr>
<tr>
<td>Vdd</td>
<td>1.8 V</td>
</tr>
</tbody>
</table>
Outline

• Transceiver Architecture
 – Baseband IC (BCM4306)
 – .11g RFIC (BCM2050)
 – .11a RFIC (BCM2060)

• System Measurement Results

• Conclusion
802.11a Radio Architecture

• Goal: Lowest Cost, Highest Performance, Lowest Power Consumption Radio
 – Direct Conversion Receiver and Transmitter Architecture
 – CMOS Implementation
 – Integrated PA
 – Take Advantage of Auto-Calibration Schemes
Implementation Challenges

• Direct Conversion:
 – DC offsets
 – Flicker noise on receive path
 – Rx path and/or Tx path oscillations
 – Quadrature accuracy
 – LO pulling
 – LO feedthrough

• Integrated PA
 – High linearity requirements for PA

• Auto-Calibration
 – Automatic Carrier Frequency Control (AFC) Loop
BCM2060 Simplified Radio Architecture

Balun → Balun
Balun → Balun

Optional BPF

SW

LO Generation

PLL

XO

AFC

TX Baseband

RX Baseband

JTAG

4 wires JTAG

Crystal Clock out

AFC_I in

AFC_Q in

TX_I in

TX_Q in

RX_I out

RX_Q out

RSSI’s out

Sensors out

RC & R calibration
Receiver Description

- Full integration
- On-Chip LNA input matching
- High-gain, low-noise, high-linearity, gain controllable LNA/mixer
- 3 stages of high-pass VGA’s
- A5^{th}-order Chebychev LPF
- Dual RSSI’s
- System NF of 4dB and max gain of 93dB is achieved
Transmitter Description

- Full integration
- 3rd-order Butterworth LPF’s
- Baseband and RF VGA’s
- High-linearity, high-power integrated class AB power amplifier
- On-chip power amplifier output matching
- $TX_{P_{-1dB}}$ of 19dBm and P_{sat} of 23dBm are achieved
PLL Description

- Full Integration
- Integer-N PLL with programmable loop bandwidth
- "Fractional-VCO† with $f_{vco} = \frac{2}{3} f_{rf}$
 - Reduces pulling from high-power on-chip PA
 - Reduces transmitter LO feed-through
 - Reduces receiver DC offsets due to self-mixing
- Automatic frequency control integrated into PLL
- PLL achieves PN of $<-100\text{dBc/Hz} @ 30\text{KHz}$ offset with $f_{rf} = 5.24 \text{ GHz}$

†H. Darabi, et. al., ISSCC 2001
Chip Level Auto-Calibration

- VCO tuning
- AFC
- AFC self-calibration
- R-Calibration on bandgap blocks
- RC time constant calibration
- Integrated power detector
- Integrated temperature sensor
- Transmit LO feedthrough cancellation
Rx System NF and Sensitivity

Graph 1:
- **BB Frequency [MHz]:** 0.1, 1, 10
- **NF [dB]:** 2, 4, 6, 8, 10
- **Gain [dB]:** 0.1, 1, 10

Graph 2:
- **Data Rate [Mbps]:** 0, 20, 40, 60
- **Rx Sensitivity [dBm]:** -100, -95, -90, -85, -80, -75, -70, -65, -60
- **Measurement:** 11.7dB (σ = 0.3dB)
- **Spec:** 8.9dB (σ = 0.4dB)
Measured Transmit Output Power

- Saturated power limited
- EVM limited
- Spectral mask limited
Measured TX Power Spectrum

12.8dBm, 54Mbps, QAM64 (EVM Limited)

18.7dBm, 36Mbps, QAM16 (Spectral Mask Limited)
Summary of Transceiver Performance

<table>
<thead>
<tr>
<th></th>
<th>Measured (this paper)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Band</td>
<td>5.15 – 5.35 GHz</td>
<td>GHz</td>
</tr>
<tr>
<td>RX NF</td>
<td>4</td>
<td>dB</td>
</tr>
<tr>
<td>RX Sensitivity (6Mbps)</td>
<td>-93.7 ± 0.9 dBm</td>
<td>dBm</td>
</tr>
<tr>
<td>RX Sensitivity (54Mbps)</td>
<td>-73.9 ± 1.2 dBm</td>
<td>dBm</td>
</tr>
<tr>
<td>RX IIP3</td>
<td>-4.8 dBm</td>
<td>dBm</td>
</tr>
<tr>
<td>RX IIP2</td>
<td>> 30 dBm</td>
<td>dBm</td>
</tr>
<tr>
<td>RX Gain Range</td>
<td>15 to 93 dB</td>
<td>dB</td>
</tr>
<tr>
<td>TX Power Range</td>
<td>-30 to +18.7 dBm</td>
<td>dBm</td>
</tr>
<tr>
<td>TX Psat</td>
<td>+23 dBm</td>
<td>dBm</td>
</tr>
<tr>
<td>TX P-1dB</td>
<td>+19 dBm</td>
<td>dBm</td>
</tr>
<tr>
<td>Vdd</td>
<td>1.8 V</td>
<td>V</td>
</tr>
<tr>
<td>Vdd_PA</td>
<td>3.3 V</td>
<td>V</td>
</tr>
<tr>
<td>Phase Noise @ 30KHz</td>
<td>-100 dBc/Hz</td>
<td>dBC/Hz</td>
</tr>
<tr>
<td>RX Power Consumption</td>
<td>150 mW</td>
<td>mW</td>
</tr>
<tr>
<td>TX Power Consumption</td>
<td>380 (15dBm OFDM output) mW</td>
<td></td>
</tr>
<tr>
<td>ESD</td>
<td>> ±2.5 on all pins</td>
<td>KV</td>
</tr>
<tr>
<td>Technology</td>
<td>0.18um 1P5M CMOS</td>
<td></td>
</tr>
<tr>
<td>Die Size</td>
<td>11.7 (including padring) mm²</td>
<td></td>
</tr>
</tbody>
</table>
Die Microphotograph of BCM2060
Outline

• Transceiver Architecture
 – Baseband IC (BCM4306)
 – .11g RFIC (BCM2050)
 – .11a RFIC (BCM2060)

• System Measurement Results

• Conclusion
Flat-Channel Sensitivity Test Diagram

REFERENCE (Transmitter) → RF mux ↓ Power Meter → DUT (Receiver)

Dir. Coupler ↔ Prog. Atten. ↔ Dir. Coupler
802.11g System Sensitivity Test Result

1 Mbps sensitivity
-97 dBm

54 Mbps sensitivity
<-70 dBm

Results include all PCB and connector losses.
Measured BCM2060 Phase Noise

Residual PM = 0.0075 rad = 0.43 deg

From 1 kHz
To 305.8116 kHz

Target Specifications
Measured 802.11a TX Constellation Diagram

EVM = -33dB
Po = +6dBm
64-QAM
54 Mbps
Measured 802.11a TX EVM Histogram

EVM = -33dB
Po = +6dBm
64-QAM
54 Mbps
Outline

• Transceiver Architecture
 – Baseband IC (BCM4306)
 – .11g RFIC (BCM2050)
 – .11a RFIC (BCM2060)

• System Measurement Results

• Conclusions
Conclusions

• Highest Performance, Highest Integration, Smallest Size, Lowest Power Consumption IEEE 802.11g Transceiver Reported to Date
 – 4 dB Rx chain noise figure
 – Excellent performance in the presence of real-world impairments
 – Fully integrated, direct conversion
 – Various integrated self contained or system level calibration capabilities for high yield and tight tolerances
 – 790 mW transmit or receive (1.8 V), RF and baseband/MAC
 – 10 mW sleep mode, RF and baseband/MAC
 – 802.11g receiver sensitivity with all board losses
 • -70 dBm 54 Mbps
 • -97 dBm 1 Mbps
Conclusions

• Highest Performance, Highest Integration, Smallest Size, Lowest Power Consumption IEEE 802.11a Transceiver Reported to Date

 – 4 dB Rx chain noise figure

 – 23 dBm Tx P_{sat} with integrated PA

 – Excellent performance in the presence of real-world impairments

 – Fully integrated, direct conversion

 – Integrated or system level calibration capabilities for high yield and consistent performance
Acknowledgements

The authors acknowledge the contribution of the following groups:

System Engineering (Sunnyvale, CA)

CAD Support (Irvine, CA)

RF Engineering (Irvine, CA)

Operations and Test Engineering (Irvine, CA)

In particular the contributions of the following individuals are greatly appreciated:

C. Hansen, T. Moorti, R. Gaikwad, J. Lauer, L. Hoo, S. Garlapati, M. Kobayashi
A. Bagchi, G. Kondylis, B. Edwards, M. Matson, M. Fischer, J. Pattin, C. Chu
C. Young, L. Yamano, L. Wu, V. Kodavati, T. Kwan, D. Sobel, A. Woo, L. Burns
T. V. Nguyen, M. Chok, P. Wong, A. Ito, B. Bacher, J. To, R. Graham, G. Loyola