A UMTS Baseband Receiver Chip for Infrastructure Applications

S. Sriram, K. Brown, P. Bertrand, F. Moerman, O. Paviot, C. Sengupta, V. Sundararajan, and A. Gatherer

Wireless Infrastructure Business Unit, Texas Instruments Inc.
Outline

- UMTS/CDMA Cellular System Overview
- CDMA Base Station Receiver Functions
- System Partitioning
- The TCI110 Receive Chip-rate Application Specific Signal Processor (ASSP)
 - Correlator architecture
 - Front-end buffer
 - Finger de-spreader
 - Path searcher
 - Preamble detector
 - Host Interface
- Summary
Cellular System

Base Station (Node B)

Uplink (reverse link)

Downlink (fwd link)

User Equipment (UE)
UMTS FDD 3G Standard

- Frequency Division Duplex
- Wideband CDMA
- Variable data rates and associated services
 - 2 MBPS peak rate
- Network backward compatible to GSM
3G Base Station: Key Care-abouts

Cost per channel

Flexibility

- Variable data rate and traffic
 - Mix of rates from 12.2Kbps (voice) up to 2Mbps (data)
- Flexible cell sizes
 - Macro/Micro/Pico/In-door
- Support of disparate environments
 - Vehicular, pedestrian, stationary
- Flexible resource allocation
 - Seamless processing/memory trade-off between various traffic scenarios
- Flexible implementation of base-band algorithms
 - Allow for field upgrades/enhancements
UMTS/W-CDMA Deployment Projections

Region

- **Japan**: Prototype 2001, Commercial 2003

Time

- 2001
- 2002
- 2003
- 2004
- 2005
Spread Spectrum

Pseudo-Noise (PN) Sequence

User Data “001...”

\[X \]

\(N \) “chips”

“0” \quad “0” \quad “1”

Bandwidth \(w \)

Bandwidth \(Nw \)
CDMA

: PN sequences for different users are orthogonal

\[\sum_{k} P_{N_i}(k) P_{N_j}(k) \approx 0 \]

: “De-spread” with local PN sequence
Base Station Receiver Functions

RF Front End Analog Baseband

Despreaders
RAKE fingers

Preamble Search

Multi-Path Search

Parameter Estimation and Control
- Channel estimation
- AFC, AGC, Time Tracking
- Measurements
- Finger allocation
- TFCI decoding
- RACH post-processing

Multipath Combining

Symbol Rate Processing
- Channel decoding
- Rate matching
- CRC
- De-interleaving
- Channel de-mux

Radio Resource Management

Network Interface

Network Backplane

Digital Baseband

Real World Signal Processing™

Texas Instruments
Chip-Rate Processing Front-End

De-spreader functions

- Implements Rake “fingers”
- Inner product function:

\[
y(k) = \sum_{n=0}^{SF-1} x(k.SF + n) * pn(k.SF + n)
\]

Search functions

- Path search and Preamble search
- Search for pilot signal within a time window of uncertainty
- Matched filter function:

\[
y(k) = \sum_{n=0}^{M-1} x(k-n) * pn(n)
\]

Very high computation rates involved

- > 150 Billion Complex “Multiply Accumulates” per second
- Relatively low processing rate downstream of the correlator
System Partition

TCI110

Receive Chip-Rate ASSP

DSP

TCI100

Chip-Rate Assist DSP

DSP

TCI100

Symbol-Rate DSP

DIGITAL BASEBAND

DESPREADERS
RAKE fingers

PREAMBLE SEARCH

MULTI-PATH SEARCH

RADIO RESOURCE MANAGEMENT

MULTIPATH COMBINING

PARAMETER ESTIMATION AND CONTROL

- Channel estimation
- AFC, AGC, Time Tracking
- Measurements
- Finger allocation
- TFCI decoding
- RACH post-processing

SYMBOL RATE PROCESSING

- Channel decoding
- Rate matching
- CRC
- De-interleaving
- Channel de-mux

NETWORK INTERFACE

REAL WORLD SIGNAL PROCESSING™

TEXAS INSTRUMENTS
TCI110 Architecture

TCI110

FE

Front-End Interface

Power Estimator

ARMP

Preamble Detector

Path Monitor

ARMF

Finger Despreaster

Synchro module

Host Interrupt Interface

Host Transfer Interface

TCI100

R E A L W O R L D S I G N A L P R O C E S S I N G ™
Correlator Architecture

Four task-based accelerators

- Finger de-spreader, Path monitor, Preamble detector, and Power estimator
- Tasks set-up through software running on a programmable DSP
- Results transferred to DSP periodically via DMA

Each accelerator employs a vector-correlator architecture

- Datapath and control customized for specific functions (FD, PM, PD, PE)
- Control includes two ARM micro-controllers
- All tasks mapped to a accelerator run on the same data path in a time-multiplexed manner
Correlator Architecture

Front End Interface

Input buffer: 8x Oversampling N antennas

PN Code Gen

Adder Trees

Coh. ACC

Non-coh. ACC

Scratch Mem.

Scratch Mem.

Output Memory

From the Analog Front End

Control Memory

ARM Microcontroller

Task Buffer

TCI API

DSP Control S/W
Front-End Interface

Function

- **Distribute**
 - Up to 24 sample streams (including 2 delay streams to FD)

- **Interpolate for FD**
 - From 8x, or 4x, or 2x samples/chip to 8x samples/chip

- **Decimate for other modules**
 - From 8x, 4x, 3x samples/chip to 2x for PD and PM and 1x for PE

Typical configurations:

<table>
<thead>
<tr>
<th>Bus Mode</th>
<th>Oversampling Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>16 bits</td>
<td>12</td>
</tr>
<tr>
<td>32 bits</td>
<td>24</td>
</tr>
<tr>
<td>48 bits</td>
<td>24</td>
</tr>
</tbody>
</table>
Finger De-Spreader

Performs de-spreading of received multi-path components in a CDMA RAKE receiver
- Data/Control channel despreading
- Includes Early/On-time/Late-time de-spreading with energy accumulation for time tracking
- Flexible allocation of a pool of correlation resources

Usage scenarios:

<table>
<thead>
<tr>
<th>Finger Despreader</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>256</td>
</tr>
<tr>
<td>128</td>
</tr>
<tr>
<td>64</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
Finger De-Spreader Usage Examples

- 2048 chip-rate de-spreaders running in parallel
- May be flexibly configured in a number of ways
 - 64 UE at 12.2Kbps, 8 Fingers/UE
 - DPDCH de-spreading
 - DPCCH despreading
 - Early/On-time/Late correlation results on DPCCH for time tracking
 OR
 - 128 UE at 12.2Kbps, 4 Fingers/UE
 - DPDCH de-spreading
 - DPCCH despreading
 - Early/On-time/Late correlation results on DPCCH for time tracking
 OR
 - 51 HSDPA UE, 8 Fingers/UE
 - ADPCH de-spreading
 - HS-DPCCH de-spreading
 - DPCCH despreading
 - Early/On-time/Late correlation results on DPCCH for time tracking
 OR
- Combinations of the above within the 2048 de-spreader limit
Path Monitor Performance

Performs multi-path search for all received users

- Flexible time-multiplexing of resources among users
- Includes flexible coherent and non-coherent (energy) accumulation

Typical usage:

- 64 Users, Search over 2 antennae in parallel
- 128 chip window (at ½ chip resolution), 1/8th activity factor

Other usage scenarios:

<table>
<thead>
<tr>
<th>Total UEs</th>
<th>UEs</th>
<th>Activity</th>
<th>Search Window</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chips</td>
</tr>
<tr>
<td>44</td>
<td>8</td>
<td>1/2</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1/1</td>
<td>128</td>
</tr>
<tr>
<td>24</td>
<td>16</td>
<td>1/2</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1/1</td>
<td>128</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>1/1</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1/1</td>
<td>256</td>
</tr>
</tbody>
</table>
Preamble Detector Performance

Implements a sliding window correlator for detection of Random Access Channel Preamble

- Flexible coherent and non-coherent accumulation intervals
- Parallel search over all 16 RACH signatures

Typical usage

- Correlate over complete preamble (4096 chips)
- 512 chip window, \(\frac{1}{2} \) chip resolution (20Km cell radius)
- Search over 2 antennae in parallel

Other usage scenarios:

<table>
<thead>
<tr>
<th>Scr. Codes</th>
<th>Signatures</th>
<th>Activity</th>
<th>Search Window</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chips</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>1/2</td>
<td>1024</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>1/1</td>
<td>512</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>1/2</td>
<td>256</td>
</tr>
</tbody>
</table>
Host Interface

TCI110

Configuration/Status
Registers & Tables

Output buffers
(Symbols, EOL, Search data)

TCI100

CPU

EMIF A

L2

EDMA Controller And PaRAM

Step 1:

Host Interface sets up EDMA channels in PaRAM

Step 2:

EDMA controller transfers data blocks to L2.
HI re-groups the data to have one transfer per user or groups of users
TCI110 Chip Metrics

- **Technology**: 0.13 μm CMOS, 7 Layer Metal, High speed copper process
- **Size**: ~ 75M Transistors, ~ 50% die area is SRAM, 35 x 35 388-pin BGA package
- **Clock**: ~ 125 MHz Datapath, ~ 250 MHz ARM
- **Power**: ~ 2W, 3.3 V I/Os, 1.2 V Internal
TCI110 Summary

- **Lowest cost per channel enabled via**
 - Time-multiplexed datapath architecture that allows memory sharing
 - Highly integrated SOC

- **Flexible / Programmable**
 - “Pool of Resources” concept for flexible resource allocation in a multi-channel context
 - Inherently flexible design enhanced with the programmability of embedded cores
 - Yet optimized for chip rate applications:
 - ~ 200 Billion chip operations per second
 - Parallel datapaths for finger de-spreading, path monitoring, preamble detection
 - Dedicated interface and distribution of antenna data
 - Highly optimized transfer of results data to C64x

- **Enhanced time-to-market**
 - Programmable approach allows bug fixing / feature enhancement in Software
Flexibility/Cost Combination of DSP + Custom ASIC

Channel Card Architecture Approach of Leading WI OEMs

- All DSP
- DSP + FPGA (Reconfigurable)
- TCI100 + Customizable ASSP
- All ASIC

New Single Platform Chipset is Customizable to Meet Each OEM’s Individual Needs
Customizable Chipset Maintains OEMs Ability to Differentiate

High-performance, programmable DSP

Flexible hardware configured via registers and commands under DSP software control