What is SC10?

- Companion chip for handheld devices
 (Cell-phones, PDAs, dedicated game devices)
- Assumes external host processor + memory
- Accelerates image, video, 2D and 3D processing
- Designed for battery-powered applications
- Small package
- Host interface scales from 8-bit to full 32-bit I/O
Multimedia Features

- Full-duplex hardware MPEG4 codec
- CIF MPEG4 encode @ 30fps
- CIF MPEG4 decode @ 30fps
- MPEG4 simple profile level 0, 1, 2, 3
- 3MP camera support
- 1.3MP preview @ 24fps
- 640x480 display support
- 72MHz camera clock
- Serial Peripheral Bus for camera control
3D Design Goals

- Efficient use of power
- Efficient use of area
- Broad API support
 - OpenGL-ES
 - D3D Mobile
 - non-3D uses (signal/image processing)
- Modular, expandable architecture
 - quick response as the market grows
 - simple, consistent interfaces and data-types
 - fully programmable to support evolving APIs

3D Pipeline Overview

- Setup – prepares triangles for rasterization
- Raster – interpolation of parameters
- Gatekeeper – scoreboard and data flow control
- Data Fetch (DF) – color, depth, texture data reads
- Arithmetic Units (ALUs) – blending/combiner ops
- Data Write (DW) – color & depth writeback
3D Block Diagram

Setup Unit

- Simple packet-based host interface
- 32-bit IEEE float, S15.16 fixed and packed .8 inputs
- Up to 24 parameters + x,y,z,w per triangle
 - meaning of parameters left up to software
- Large vertex cache (software controlled)
- Performs simple transform, clip & viewport (1/w)
- Culls back-facing triangles
- Calculates interpolated LOD quantity per vertex
Raster Unit

- Iterates intersection between triangle and scissor rectangle
- Supports “free” guard-band clipping
 - reduces complex clipping cases by 10x
- Follows OGL-ES/D3DM rasterization rules
- Generates pixel packets used by rest of pipe
 - 4 high-precision and 4 low-precision perspective-correct iterated values per row (plus Z for “free”)
 - span location (X,Y) sent via SPAN_START packet
 - even/odd pixels interleaved to hide ALU latency
- Reduces precisions as early in pipeline as possible

Pixel Packet

Packet contains iterated data and sideband information about even/odd, kill and instruction sequence

<table>
<thead>
<tr>
<th>R0</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
</tr>
</tbody>
</table>

Odd Pixel

Even Pixel

- Texcoord fraction + LOD (int or fraction)
- Depth value
- Pair of color values (ALU native format)
- Packed 5555 color

Hot Chips 16
Gatekeeper (GK) Unit

- Controls pixel packet flow via counting
 - keeps pipeline as full as possible during recirculation
 - tracks recirculated X,Y positions
- Prevents coincident pixels from entering shader
 - scoreboard via bitmap marks X,Y pairs busy
- Detects pipeline idle condition
- Collects debug readback info from shader blocks
- Maintains cache coherency

Data Fetch (DF) Unit

- 8 instructions (e.g. 4 rows w/ 2 recirculations)
- 8 surfaces (color, depth and up to 6 textures)
- One depth fetch per row (typically one per pixel), AND
- One color or filtered texture fetch per row
 - supports RGBA, palettized and compressed formats
 - one clock nearest/bilinear, two clocks per trilinear
 - replaces texcoords with fetched 40-bit color (S1.8)
- Manages color/depth and texture caches separately
- Performs depth test, marking pixel killed on failure
 - Z-write deferred till semantically correct place
Arithmetic Logic (ALU) Units

- 8 instructions
- Performs $a*b + c*d$ on one S1.8 scalar per row
- Operates on 4 20-bit R variables from row
- Can use 2 20-bit constants per unit (read-only)
- Can also use 2 20-bit temporary values per unit
-_consts/temps can be 4 values in S1.8 format, 8 values if 5555 packing is used both are software loadable
- Can complement/negate operands, clamp result
- 4 ALU units in SC10 (typically one per channel)

ALU Block Diagram

Instructions

- MAD $r = a*b + c*d$
- MBA $r = a*b \& c*d$
- MBO $r = a*b | c*d$
- MBX $r = a*b ^ c*d$
- MUL $r(lo) = a*b, r(hi) = c*d$
- MIN $r = \min(a*b, c*d)$
- MAX $r = \max(a*b, c*d)$
- SNE $r = (a*b) \neq (c*d) \ ? 1 : 0$
- SEQ $r = (a*b) == (c*d) \ ? 1 : 0$
- SLT $r = (a*b) < (c*d) \ ? 1 : 0$
- SLE $r = (a*b) \leq (c*d) \ ? 1 : 0$
- KNE kill if $(a*b) \neq (c*d)$
- KEQ kill if $(a*b) == (c*d)$
- KLT kill if $(a*b) < (c*d)$
- KLE kill if $(a*b) \leq (c*d)$

After Upac the data format is S1.8 allowing for precision greater than 1.0 and less than 0.0. Color fragments sent to the frame buffer will be clamped between 0.0 and 1.0.
Data Write (DW) Unit

- 8 instructions
- Write coalescing buffers for color and depth
 - can write to all 8 surfaces at lower performance
- Optionally dithers to 565 color
- Suppresses killed pixel writes
- Indicates retired writes to GK for scoreboard

SC10 Chip Plot

3D

Everything Else...
Power Reduction Techniques

- Hardware Co-Processor Engines
 - 2D/3D Graphics Engines, Graphics Controller
 - Video Input Port, Flat Panel Interface
- Low Leakage Process
- Embedded Memory
- Relaxation Oscillator
- Fully Asynchronous Clocking
- Dynamic Clock Switching
- Sub-Module Clock Gating
- Automatic Pipeline Shutdown

Multimedia Statistics

- **6.8M transistors in UMC 0.15µLL**

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Conditions</th>
<th>Core Power (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3MP JPEG Decode</td>
<td>15fps @ 1.3MP</td>
<td>10.6 mW</td>
</tr>
<tr>
<td></td>
<td>Continuous Decode</td>
<td></td>
</tr>
<tr>
<td>1.3MP JPEG Encode</td>
<td>15fps @ 1.3MP</td>
<td>19.9 mW</td>
</tr>
<tr>
<td></td>
<td>Continuous Encode</td>
<td></td>
</tr>
<tr>
<td>MPEG4 Decode</td>
<td>CIF @ 30fps</td>
<td>13.1 mW</td>
</tr>
<tr>
<td>MPEG4 Encode</td>
<td>CIF @ 30fps</td>
<td>28.1 mW</td>
</tr>
</tbody>
</table>

| CVDD = 1.5V | QVGA TFT LCD Display| BVDD = 3.3V |
| VDD = 3.3V | 1.3MP CMOS Camera | VVDD = 2.8V |

9
3D Statistics

- 3.7M transistors in UMC 0.15µm LL
- Capable of:
 - useful pixels at 1 clock/pixel (color + texture + depth)
 - complex at 2 clocks/pixel (e.g. + blending or 2nd texture)
 - supporting 4 textures with all OGL-ES features enabled
- Measured pixel fill-rates of 96% theoretical peak on XSCALE/Accelent development system
- Given 1 vertex/triangle, can draw ~1M tris/sec at 72MHz (988k triangles/sec measured on XSCALE/Accelent system)
- Preliminary core power measurements at 1.5V/72MHz show apps (furry demo, Quake II) consume ~50-75mW at 30FPS
 - Drivers not yet tuned for power

3D Examples