SH-Mobile3: Application Processor for 3G Cellular Phones on a Low-Power SoC Design Platform

H. Mizuno, N. Irie, K. Uchiyama, Y. Yanagisawa1, S. Yoshioka1, I. Kawasaki1, and T. Hattori2

Hitachi Ltd., Tokyo, Japan
1Renesas Technology Corp., Tokyo, Japan
2SuperH Japan Ltd., Tokyo, Japan

Outline

- Background
- Chip overview
- Active power reduction
 - High MIPS/MHz CPU core
 - Java accelerator
- Standby power reduction
 - Low-power SoC design platform
 - Supply domains and two standby modes (Resume and ultra standby modes)
- Summary
Background

- **3G cellular phone**
 - High data throughput (144k – 2M bps)
 - Advanced applications (Java, videophone & 3D CG)
 - Long battery life (> 300 hours)

Advanced process technology

- Higher operating speed, large amount of integration and lower leakage power are conflicting requirements.

Chip overview

- 130-nm, Dual-Vth, Dual-tox CMOS (5Qu) technology
- Dedicated multiple computation engines:
 - SuperH CPU core (SH-X), inc. DSP & Java™ (BTU) engines
 - MPEG-4
 - 3D graphics
- 256-kB on-chip RAM (URAM)
- Low-power SoC design platform
 - μI/O (level shifter technology)
 - On-chip power switches (PSWs)
Active power reduction

To achieve sufficient performance with minimum operation frequency and power consumption,

- High MIPS/MHz CPU core
 - Optimized dual-issue 7-stage pipeline
- Dedicated multiple computation engines
 - Java accelerator
 - MPEG-4
 - 3D graphics
PipeLine structure

- Dual-issue 7-stage Pipeline
 - Higher MHz, but lower cycle performance
- Optimized pipeline using delayed execution enhances cycle performance.

Delayed execution starting points

<table>
<thead>
<tr>
<th>I1</th>
<th>I2</th>
<th>ID</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
<th>E6</th>
<th>E7</th>
</tr>
</thead>
</table>

Instruction Fetch
- Early Branch
- Decode
- Execution
- WB
- Address
- Data Load
- WB
- Tag
- -
- Data Store

CPU

Decode

Multiply

WB

ALU

WB

DSP

Delayed execution (DE)

- DE accelerates multiple-cycle and dependent Inst. flows.
- e.g. typical DSP instruction flow:
 - Load --- Arithmetic Executions --- Store

Conventional Architecture: 3-cycle Stalls

<table>
<thead>
<tr>
<th>Load:</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiply:</td>
<td></td>
<td>E1</td>
<td>E2</td>
<td>E3</td>
<td>E4</td>
</tr>
<tr>
<td>Store:</td>
<td>E1</td>
<td>E2</td>
<td>E3</td>
<td>E4</td>
<td>E5</td>
</tr>
</tbody>
</table>

Delayed Execution: No Pipeline Stall

<table>
<thead>
<tr>
<th>Load: MOVX.W @R4, X0</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiply: PMULS X0, A0</td>
<td>E1</td>
<td>E2</td>
<td>E3</td>
<td>E4</td>
<td>E5</td>
</tr>
<tr>
<td>Store: MOVX.W A0, @R5</td>
<td>E1</td>
<td>E2</td>
<td>E3</td>
<td>E4</td>
<td>E5</td>
</tr>
</tbody>
</table>
Performance evaluation

![Graph showing MIOPS/MHz performance evaluation]

Benchmark: Dhrystone 2.1

Operating power of processor core

![Graph showing operating power of processor core]

Benchmark: Dhrystone 2.1

V_DD = 1.2V

- 0.57 mW/MHz at 1.0V
- 0.40 mW/MHz at 1.8 MIPS/MHz

1.8 MIPS/MHz

0.40 mW/MHz

= 4500 MIPS/W
Java accelerator (BTU)

BTU block diagram
Parallel execution in BTU

- BTU shares control information and data with CPU. It enables parallel execution of data and control processing. (e.g. Java exception detection)

<table>
<thead>
<tr>
<th>Coprocessor type</th>
<th>Conv. accelerator</th>
<th>BTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>ALU</td>
<td>CPU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cache</td>
<td>Cache</td>
<td>Cache</td>
</tr>
</tbody>
</table>

Data separated: Data shared: Control shared

Java power evaluation

- Performance: w/BTU 6.55 ECM/MHz (basic VM 0.64 ECM/MHz)
- Power consumption is reduced by 6%, and power/ECM is reduced by 90%.

![Power Consumption Chart]

Evaluation board 216 MHz, CLDC 1.0.4
Standby power reduction

To achieve lower standby power with minimum speed overhead,

- Low-Power SoC Design Platform
 - On-chip power switches (PSWs)
 - μI/O
 - Low leakage data-retention RAM technology
- Two Standby modes
 - Resume standby mode
 - Ultra standby mode

Low-power SoC design platform (PSWs)

- Thick-tox High-Vth NMOS transistors are used for on-chip power switches (PSWs).
- It minimizes various leakage currents such as subthreshold, gate tunneling, GIDL, and junction leakage.
Low-power SoC design platform (μI/O)

- μI/O has level-shift function and provides optimal supply & voltage domains for dedicated multiple computation engines.
- It also prevents invalid signal transmission and supports:
 - Internal vss1 and/or vss2 shutdown by on-chip power switches
 - External vdd1 and/or vdd2 shutdown by off-chip regulators

![Diagram of μI/O design platform]

Low-leakage data-retention memory

- Hierarchical on-chip power switches in SRAM provide subdivisional power-line control.
 - In active mode
 - Vssm, Vssa, Vssc = Vss
 - Vddw = Vdd (sel.) ~ 0.4 V down (unsel.)
 - Local Vss = Vss
 - In retention mode
 - Vssa, Vssc: Hi-Z
 - Vssm: ~ 0.4 V up
 - Vddw: ~ 0.4 V down
 - Local Vss = Vss
 - In shut-down mode
 - Local Vss: Hi-Z
Leakage current of the memory

![Graph showing leakage current comparison between conventional and proposed methods.](image)

- **Conventional**: Memory cell 920 µA, Word driver 700 µA, Amp -25%.
- **Proposed (in active)**: Memory cell 700 µA, Word driver 50 µA (95% reduction).
- **Proposed (in retention)**: Memory cell 50 µA (95% reduction).

256-kB, Room Temp. V_{DD} = 1.2 V

Two low-power modes

- **Ultra standby**
 - Low leakage (~10 µA)

- **Resume standby**
 - Low leakage (~100 µA)
 - Quick recovery (<3 ms)

![Block diagrams showing Ultra and Resume standby modes.](image)
R-standby recovery operation

- Hardware operation
 - Power switch control
 - Clock generation (PLL, D.PLL lock)
 - Data backup using backup latch
 - BAR (Boot Address Register) holds restart address
 - Clock and interrupt setting needed just after wake-up

- Software operation
 - URAM: data backup mem.
 - Control registers
 - OS task table
 - etc.

Recovery time from R-standby

- Total recovery time from R-standby mode is only 1.6 ms or 2.8 ms (@Ext. clk=32 kHz).

- w/o D.PLL lock
- w/ D.PLL lock (Ext. CLK=32kHz)
Standby power consumption

Room Temp. \(V_{DD} = 1.2 \) V

Leakage current (\(\mu A \))

- Standby w/o power cutoff: 2.2 mA
- R-standby: 86 \(\mu A \)
- U-standby: 11 \(\mu A \)

-96% - 99%

Summary

- 130-nm 5-layer-Cu dual-Vth, dual-tox CMOS technology
- Dedicated multiple computation engines:
 - SuperH CPU core (SH-X) including DSP & JavaTM engines
 - MPEG-4
 - 3D graphics
- Power efficiency, SH-X: 4500 MIPS/W
 - Java: 6.55 ECM/MHz
- Low-power SoC design platform
 - On-chip power switches
 - \(\mu I/O \)
 - Low-leakage data-retention RAM
- Two standby modes (R-standby and U-standby)
 - Leakage current: 86 \(\mu A \) and 11 \(\mu A \)
 - Recovery time from R-standby: 1.6 ms or 2.8 ms (@Ext. clk=32 kHz)

RENESSAS

HITACHI

Inspire the Next