High-Performance Processing with 90-nm FPGAs

Hot Chips 17
Aug 2005

Kees Vissers
Erich Goetting
Peter Alfke
Agenda

Virtex4 Overview
Processor and FPGA performance
Three Examples
 Cellular Telephone Basestation
 Scientific Co-Processor
 Image Enhancement for Movies
Conclusion
ASMBL Using Flip-Chip

- **Application-Specific Modular Block Architecture**
- Groups specific circuit blocks in dedicated columns
 - Logic, DSP, BRAM, Clocking, DCMs, I/O, MGTs, PowerPC, Configuration
- I/O columns distributed throughout the device (Flip-Chip)
Three Virtex-4 Families

- Application-Specific Modular Block Architecture makes it easier to create sub-families
 - **LX** has logic, BlockRAMs, DSP-Blocks, I/O
 - **SX** has more DSP Blocks and BlockRAMs, less logic
 - **FX** adds powerful system features:
 - PPC, Ethernet controller, 11 Gbps transceivers

Virtex-4 = eight ‘LX, three ‘SX, six ‘FX circuits

17 family members available in 2005
3 Families = Scalable Performance

LX 15, 25, 40, 60, 80, 100, 160, 200
FX 12, 20, 40, 60, 100, 140
SX 25, 35, 55 (name = number of Logic Cells x 1000)
Dedicated Circuits in FPGAs

• “Hard” cores offer density, speed, lower power
 – Equal to 90-nm ASICs, but far less expensive
• Expandable, pipelined Multiplier/Accumulator
• Dual-ported BlockRAM with FIFO controller
• ChipSynch I/O serializer/ deserializer + IDELAY
• Multi-Gigabit transceivers, 0.6 to 11 Gbps
• PowerPC μProcessor with co-processor interface (APU) and Ethernet controller

Dedicated circuits provide a big performance boost
Processor and FPGA
Performance
1000:1 Performance Range

Element

- PPC
- PPC + APU
- Interleave
- LUTs + DSP48

Clocks per sample

- 1000:1
- 100:1
- 10:1
- 1:1

500 MHz clock

- 500 Ks/sec
- 5 Ms/sec
- 50 Ms/sec
- 500 Ms/sec

Memory

- 4-256 KByte
- 4-256 KByte
- 10 KByte
- 1 KByte

Applications

- Control → Audio → Mobile Video → HDTV → Communications

- GPP
- DSPs
- ASICs

FPGAs
Covering a Wide Range

- Network Processing
- Supercomputing
- Scientific Processing
Example:
Cellular
Telephone Base Station
Wireless Base Station
3G Functional Diagram
TX/RX Implementation

- 3G specification: each channel has a sample rate of 3.84Ms/sec
 - Digital Filtering at 491 MHz
 - 128 channels using 128x the sample rate
 - Digital Up/Down Conversion
 - Pre-Distortion and Digital Filtering
 - Up to 512 18x18 multipliers + accumulators to build massively parallel filter implementations
DSP Block

- Evolution from embedded multipliers:
 - Pipeline registers enable 500 MHz performance
 - Cascade logic enables sustained 500 MHz performance throughout DSP column
 - Build high-speed multi-level filters using DSP Slices
 - *Achieve 128x the sample rate of 3.84 Ms/sec (491.5 MHz clocking)*
Wireless Base Station Example

Virtex-4 Solution

Support for 128 channels using Virtex-4 FPGAs
Example:
Scientific Co-Processor
Supercomputer

- Programmed with Carte™ tools, using C or Fortran
- Overlap of DMA and computing
MAP® Logic Performance

Number of 2.8 GHz microprocessors required to equal the performance of one SRC MAP® on select algorithms

Source: SRC Computers, Inc. - Comparisons are based on measured single microprocessor and single MAP processor performance
Example: Image Enhancement for Movies
Digital Film Processing

- **HDTV** (high-end) – Film/Broadcast, Blu-ray Disc, HD-DVD
- HDTV – High resolution TV (720p)
- SDTV (DVD)

FlexFilm digital film processing with computation-intensive special functions.
Application: Noise Reduction
Application: Noise Reduction

bi-directional motion analysis → motion compensation → 3D-DWT → wavelet-based noise reduction

inverse 3D-DWT → noise post processing → 3D median filter

OUT
Film Processing Statistics

Image 2048x2048, 10bits per RGB component = 30 bits/pixel

2D intra-frame algorithm

- **Software solution**: compiled from Matlab -> C/C++, on Pentium IV 2.4GHz, 1.5GB RAM, 10.2 Specint2000
 Performance: 70 seconds per frame

- **Hardware solution**: One XC2VP50-6*, 120 MHz, synthesis,
 Performance: 24 frames per second

<table>
<thead>
<tr>
<th>Operations</th>
<th>Add</th>
<th>Multiply</th>
<th>Compare</th>
<th>FPGA speed-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giga-ops</td>
<td>9.44</td>
<td>5.81</td>
<td>3.62</td>
<td>1,680</td>
</tr>
</tbody>
</table>

* an XC2VP50 is comparable to a Virtex-4 LX40
Film Processing Statistics

Image size 2048x2048, 10 bit per RGB component

3D motion estimation/compensation inter-frame algorithm

- **Software** solution: compiled from Matlab -> C/C++, on Pentium IV 2.4GHz, 1.5GB RAM, 10.2 Specint2000

 Performance: 11 minutes per frame

- **Hardware** solution: Four XC2VP50-6, 120 MHz, synthesis,

 Performance: 24 frames per second

<table>
<thead>
<tr>
<th>Operations</th>
<th>Add</th>
<th>Multiply</th>
<th>Comp</th>
<th>FPGA speed-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giga-ops</td>
<td>179.61</td>
<td>11.63</td>
<td>11.88</td>
<td>15,840</td>
</tr>
</tbody>
</table>
DSP Programming Model

MATLAB → AccelChip

HDL

C

Work in the language of your problem

System Level Modeling & Simulation Framework

QAM Receiver Subsystem

Forward Error Correction

Embedded Microcontroller

Methodology re-couples behavior with implementation (while abstracting hardware details whenever possible)
Conclusion

- FPGAs combine configurable logic, fast I/O, processors, DSP elements, and hard cores
- Virtex4 has a family of scalable solutions
- For high-performance applications, the speed-up over a good general purpose processor can range from tens to several thousands
- Excellent FPGA-based solutions exist for base-stations, video-applications, networking, and high performance compute platforms
Acknowledgements

• The whole V4 team of the Advanced Product Division at Xilinx, see www.xilinx.com
• SRC Computers, Inc. for data on the compute platform, see www.srccomp.com
• University of Braunschweig, Prof. Rolf Ernst and Amilcar Lucas for the film processing data, see www.flexfilm.org
Appendix: Virtex-4 Family

<table>
<thead>
<tr>
<th>Device</th>
<th>Logic Cells</th>
<th>Block RAM [Kb]</th>
<th>DCM</th>
<th>SelectIO</th>
<th>XtremeDSP Slice</th>
<th>PowerPC</th>
<th>10/100/1000 EMAC</th>
<th>RocketIO Transceiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC4VLX15</td>
<td>13,824</td>
<td>864</td>
<td>4</td>
<td>320</td>
<td>32</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XC4VLX25</td>
<td>24,192</td>
<td>1,296</td>
<td>8</td>
<td>448</td>
<td>48</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XC4VLX40</td>
<td>41,472</td>
<td>1,728</td>
<td>8</td>
<td>640</td>
<td>64</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XC4VLX60</td>
<td>59,904</td>
<td>2,880</td>
<td>8</td>
<td>640</td>
<td>64</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XC4VLX80</td>
<td>80,640</td>
<td>3,600</td>
<td>12</td>
<td>768</td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XC4VLX100</td>
<td>110,592</td>
<td>4,320</td>
<td>12</td>
<td>960</td>
<td>96</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XC4VLX160</td>
<td>152,064</td>
<td>5,184</td>
<td>12</td>
<td>960</td>
<td>96</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XC4VLX200</td>
<td>200,448</td>
<td>6,048</td>
<td>12</td>
<td>960</td>
<td>96</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XC4VSX25</td>
<td>23,040</td>
<td>2,304</td>
<td>4</td>
<td>320</td>
<td>128</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XC4VSX35</td>
<td>34,560</td>
<td>3,456</td>
<td>8</td>
<td>448</td>
<td>192</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XC4VSX55</td>
<td>55,296</td>
<td>5,760</td>
<td>8</td>
<td>640</td>
<td>512</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XC4VFX12</td>
<td>12,312</td>
<td>648</td>
<td>4</td>
<td>320</td>
<td>32</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>XC4VFX20</td>
<td>19,224</td>
<td>1,224</td>
<td>4</td>
<td>320</td>
<td>32</td>
<td>1</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>XC4VFX40</td>
<td>41,904</td>
<td>2,592</td>
<td>8</td>
<td>448</td>
<td>48</td>
<td>2</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>XC4VFX60</td>
<td>56,880</td>
<td>4,176</td>
<td>12</td>
<td>576</td>
<td>128</td>
<td>2</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>XC4VFX100</td>
<td>94,896</td>
<td>6,768</td>
<td>12</td>
<td>768</td>
<td>160</td>
<td>2</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>XC4VFX140</td>
<td>142,128</td>
<td>9,936</td>
<td>20</td>
<td>896</td>
<td>192</td>
<td>2</td>
<td>4</td>
<td>24</td>
</tr>
</tbody>
</table>