Xbox 360 System Architecture

Jeff Andrews
Nick Baker
Xbox Semiconductor Technology Group
Hot Chips Presentation

• Hardware Specs
• Architectural Choices
• Programming Environment
• QA
Overview

• Design Principles
 – Next generation gaming
 – Flexibility
 – Programmability
 – Optimized for achievable performance
Hardware Designed for Games

• Triple-core, 3.2 GHz custom CPU
 – Shared 1MB L2 cache
 – Customized vector floating point unit per core
 – 5.4Gbps FSB: 10.8 GB/sec read and 10.8 GB/sec write
 • GPU can read from L2
• 500 MHz custom GPU
 – 48 parallel unified shaders
 – 10 MB embedded DRAM for frame buffer: 256 GB/sec
• 512 MB unified memory
 – 700Mhz GDDR3: 22.4 GB/sec
• 12X dual-layer DVD
• 20 GB hard drive
• High Definition video out
System Block Diagram

- CPU
 - Core0
 - Core1
 - Core2
 - L1D
 - L1I

- Memory
 - 512 MB DRAM

- GPU
 - BIU/IO Intf
 - 3D Core
 - 10MB EDRAM
 - Video Out

- I/O Chip
 - DVD (SATA)
 - HDD port (SATA)
 - Front controllers (2 USB)
 - Wireless controllers
 - MU ports (2 USB)
 - Rear Panel USB
 - Ethernet
 - IR
 - Audio Out
 - FLASH
 - System control
 - Video Out

- Analog Chip
CPU Chip/PPC Core Specs

• Three 3.2 GHz PowerPC cores
• Shared 1MB L2 cache, 8-way set associative
• Per-Core Features
 – 2-issue per cycle, in-order, decoupled Vector/Scalar issue queue
 – 2 symmetric fine grain hardware threads
 – L1 Caches: 32K 2-way I$ / 32K 4-way D$
 – Execution pipelines
 • Branch Unit, Integer Unit, Load/Store Unit
 • VMX128 Units: Floating Point Unit, Permute Unit, Simple Unit
 • Scalar FPU
• VMX128 enhanced for game and graphics workloads
 – All execution units 4-way SIMD
 – 128 128-bit vector registers *per thread*
 – Custom dot-product instruction
 – Native D3D compressed data formats
CPU Diagram

Core 0
- L1I 32K
- Instruction Unit: Branch, VIQ
- VSU: VMX, FP, VMX, Perm, VMX, Simp, FPU

Core 1
- Int, Ld/St, L1D 32K
- Int, Ld/St, L1D 32K

Core 2
- Int, Ld/St, L1D 32K

Node Crossbar / Queuing
- L2 Data
- L2 Dir
- L2 Dir

Bus Interface

Front Side Bus (FSB)
- PIC
- Test
- Debug
- Clocks
- Temp
- Sensor

L2 Data
- Uncached Unit2
- L2 Dir
- L2 Dir

MMU
- FPU
- VSU
- Int

XBOX360
Hot Chips 17
CPU Data Streaming Specs

- High bandwidth data streaming support with minimal cache thrashing
 - 128B cache line size (all caches)
 - Flexible set locking in L2
 - Write streaming:
 - L1s are write through, writes do not allocate in L1
 - 4 uncachable write gathering buffers per core
 - 8 cacheable, non-sequential write gathering buffers per core
 - Read streaming:
 - xDCBT data prefetch around L2, directly into L1
 - 8 outstanding load/prefetches per core
 - Tight GPU data streaming integration (XPS)
 - XPS – “Xbox Procedural Synthesis”
 - GPU 128B read from L2
 - GPU low latency cacheable writebacks to CPU
 - GPU shares D3D compressed data formats with CPU => at least 2x effective bus bandwidth for typical graphics data
CPU Cached Data Streaming Example

- **Core 0**: L1I 32K Instruction Unit, Branch, VIQ, VMX, FP, MMU, FPU, Test, Debug, Clocks, Temp, Sensor
- **Core 1**: L1I 32K Instruction Unit, Branch, VIQ, Int, Ld/St, L1D 32K, Instruction Unit, Branch, VIQ, Int, Ld/St, L1D 32K
- **Core 2**: L1I 32K Instruction Unit, Branch, VIQ, Int, Ld/St, L1D 32K

Annotations:
- **xDGBT 128B Prefetch around L2, into L1 D$**
- **D3D Compressed Data, VMX128 Stores to L2**
- **Non-sequential Gathering, Locked Set in L2**
- **GPU 128B Read from L2**
- **From Mem**
- **To GPU**

Diagram Details:
- L2 Node Crossbar / Queuing
- Front Side Bus (FSB)
- Bus Interface
GPU Specs

- 500 MHz graphics processor
 - 48 parallel shader cores (ALUs); dynamically scheduled; 32bit IEEE FLP
 - 24 billion shader instructions per second
 - Superscalar design: vector, scalar and texture ops per instruction
 - Pixel fillrate: 4 billion pixels/sec (8 per cycle); 2x for depth / stencil only
 - AA: 16 billion samples/sec; 2x for depth / stencil only
 - Geometry rate: 500 million triangles/sec
 - Texture rate: 8 billion bilinear filtered samples / sec
- 10 MB EDRAM ⇒ 256 GB/s fill
- Direct3D 9.0-compatible
 - High-Level Shader Language (HLSL) 3.0+ support
- Custom features
 - Memory export: Particle physics, Subdivision surfaces
 - Tiling acceleration: Full resolution Hi-Z, Predicated Primitives
 - XPS:
 - CPU cores can be slaved to GPU processing
 - GPU reads geometry data directly from L2
 - Hardware scaling for display resolution matching
GPU Block Diagram

Main Die

- BIU
- IO
- Gfx
- Display

Mem 1
- MC1
- Mem I/F

Mem 0
- MC0

Control Bus

FSB

Command proc
- Vtx assy / tesselerator
- Sequencer
- Interpolators
- Shader complex
- Shader export
- Blending i/f

AA+AZ

10MB EDRAM

DRAM Die

Video

IO

PCI-E

Hot Chips 17
Architectural Choices - SMP

• Floating point and integer important for games

• Power consumption

• Mainstream parallel technique

• Keep easy to balance

• Solution:
 – Limited SMP using simplified yet powerful cores
 – Tightly coupled to vector floating point
Architectural Choices - EDRAM

• FSAA, alpha and z place heavy load on memory BW

• Post-process effects require large depth complexity

• Enable flexible UMA solution

• Main memory FB/ZB \Rightarrow unpredictable performance

• Many different rendering styles in use, bottlenecks move

• Solution:
 – Take FB/ZB fill-rate out of the equation
Software

• SMP/SMT
 – Mainstream techniques
 – Everything is simplified by being symmetric

• UMA
 – No partitioning headaches

• OS
 – All 3 cores available for game developers

• Standard APIs
 – Win32, OpenMP
 – Direct3D, HLSL
 – Assembly (CPU & Shader) supported - direct hardware access

• Standard tools
 – XNA: PIX, XACT
 – Visual C++, works with multiple threads …
Software – Multi Thread
The Xbox 360 Platform

- The Xbox 360 platform delivers breakthrough gaming and entertainment experiences.

- To ignite the next generation of games and entertainment, we’re putting the most powerful next generation platform into the hands of the world’s greatest game creators
 - High performance hardware
 - Elegant software
 - Innovative services

- Xbox 360 was designed from the ground up, specifically to deliver the best console gaming experience
Summary

• Designed for next generation gaming
• Flexible and Programmable
• Optimized for achievable performance