Z-RAM® Ultra-Dense Memory
for
90nm and Below

Hot Chips 2006

David E. Fisch, Anant Singh, Greg Popov
Innovative Silicon Inc.
Outline

• Device Overview
• Operation
• Architecture Features
• Challenges

• Z-RAM Performance Factors
 • Memory Density vs. Speed
 • Pipeline Operation
 • Routing Impact
 • Active Power
 • Standby Power
Z-RAM Device Overview

- Compatible with standard SOI logic or memory process
- Small Cell Size
- As scalable as CMOS
- No new materials
- Works for N and PMOS devices
- Good SER Performance (10x better than SRAM at 65nm)
 - Small cell Size
 - SOI Substrate
 - Performance Improves with Frequency (unlike eDRAM)
- Can be extended to FD SOI, double gate etc…
Z-RAM Device Overview:
One transistor, Zero Capacitors

Exploits the floating body and gain effects of SOI devices

Logic “1”

Logic “0”

Graph showing the current I_s vs. voltage V_d for different voltages V_g.

$V_g = 1V$

0.6

0.8

1.5
Z-RAM Device Overview:
Writing “1” by Impact Ionization
Z-RAM Device Overview:
Writing “0” by Hole Removal
Z-RAM Device Overview:
Bit cell Read Current Waveforms
Z-RAM Device Overview:
Z-RAM vs. eDRAM

Z-RAM

Store “1”

Store “0”

Read

eDRAM

Vccp > Vcc+Vt

Vcc/2

Vcc

Vcc/2

0

+/-DV

C_BL

C_Cell

BL

BL
Z-RAM Memory Cell Operation

- Very Similar to eDRAM but with benefits of
 - Simple Process Integration
 - Robust Read method
 - Scalability
 - No Capacitor
 - No New materials
 - Litho Friendly

![Z-RAM Memory Cell Diagram]

- SOI
- Source
- Gate
- Drain
- Buried oxide
- Back gate (substrate)
- trench
- stacked
Z-RAM Memory Macro Architecture

Features

- **Small Cell Size:**
 - Enables Dense Sub-Arrays
 - Minimal RC loss

- **Current Sensing**
 - Allows long Bitlines with minimal impact on Read Access Time
 - Minimal Bitline swing during read

- **Bitline Pitch limited by Metal minimum Spacing**
 - Allows many bitlines along wordline
 - Large Page Size Possible from One Sub-array

- **Global I/O**
 - Best at $\geq 4x$ Sense Amp Pitch
 - SA-I/O MUX determines power overhead

- **Burst operation Improves Efficiency**
 - Faster, low power column (page) cycles
 - Refresh and Write-Back in Parallel with Data Out Burst
Z-RAM Memory Macro Architecture
Features

Example SRAM Cell, 65nm

A Functional 0.69µm Embedded 6T-SRAM bit cell for 65nm CMOS platform, Arnoud etal, VLSI 2003

Example DRAM Cell

(A) Top Down SEM of DRAM Cell

(B) DRAM Cell Layout

Fully Compatible Integration of High Density Embedded DRAM with 65nm CMOS Technology (CMOS5)
Y. Matsubara, etal., 2003, IEEE
Z-RAM Memory Macro Architecture

Features

Z-RAM Cell: Litho Friendly
Challenges

• Small Cell Size
 • Difficult to maintain array efficiency
 • Difficult to make Sense Amplifiers as fast as embedded SRAM equivalent
 • Random Access time slower than eSRAM
 • Can higher density and shorter routing compensate?

• More overhead with Restore & Refresh
 • SRAM does not require Restore/Refresh
 • Can Pipeline Operation or other architecture changes Address this?

• Power
 • Active Power and Standby Power often go up with improved array efficiency
 • How can the Z-RAM be optimized?
Z-RAM Performance Factors

• Memory Density vs. Speed
• Pipeline Operation
• Routing Impact
• Active Power
• Standby Power
Z-RAM Performance Factors

• Memory Density Comparison

<table>
<thead>
<tr>
<th>Density (Mbit / mm²)</th>
<th>Z-RAM</th>
<th>eDRAM (existing macros)</th>
<th>eSRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Array Configuration range

- Cost
- Performance
- Projected

Technology Nodes: 90nm, 65nm, 45nm, 32nm
Z-RAM Performance Factors

Sustained Maximum Read Frequency vs. Z-RAM Macro Density

Z-RAM Architecture Control at 90, 65 and 45nm Technology Nodes

- Maximum Sustained Frequency
- Burst of 4 with 2 Pipelined Stages (GHz)
- Memory Density (Mbits/mm^2)

- 90 nm
- 65 nm
- 45 nm
Z-RAM Performance Factors
Memory Density vs. Speed

• Access Time Better than eDRAM and Approaches SRAM
 • Benefit of underlying SOI technology
 • Low Voltage Wordline Swing
 • Minimal Bitline Voltage Swing
 • Short Interconnect

• Configure to reduce Access Time?
 • Obtain Sub-Array address early
 • Precharge Sub-Array Bitlines
 • Build with Smaller Sub Arrays

Example 16meg Z-RAM Macro
Z-RAM Performance Factors
Memory Density vs. Speed

- Limitations
 - Sense Amp Pitch vs. Speed
 - Array Efficiency
 - Total Cycle Time
 - Write-Back & Precharge

- Relative to SRAM:
 - Density: 4 - 5 x Higher
 - Access Time: 20 - 30% Longer

- Solution Depends on Application

- System Performance vs. Memory Performance depends on Application
Z-RAM Performance Factors
Memory Density vs. Speed

• Step 1: How does your Cache Size Impact Hit Rate?

![Graph showing Average Hit Rate vs. Relative Cache Size Hypothetical Examples]

- Average Hit Rate Starting at 75%
- Average Hit Rate Starting at 95%
• Step 2: What is the penalty of a “Miss”?
 • Typical Rule of Thumb: 10x or Greater Access Time Penalty
 • Depends on Application Pipeline/Architecture
 • Penalty could be greater with Deeper Pipelines
Z-RAM Performance Factors
Memory Density vs. Speed

• Step 3: What is the Average Latency?

• Average Latency

\[\text{Average Latency} = HR \times (Ta_1) + (1-HR) \times (Ta_2) \]

where HR = Hit Rate, Ta_1 = Hit access Time, Ta_2 = Miss access Time

Assume Ta_2 = Ta_1 \times PF

where PF = Miss Access Time Penalty Factor

\[= HR \times (Ta_1) + (1-HR) \times (Ta_1) \times (PF) \]

\[= (Ta_1) \times (HR + (1-HR) \times (PF)) \]

\[= (Ta_1) \times (PF - (PF-1) \times HR) \]

If \(PF = 10 \)

\[= Ta_1 \times (10 - 9 \times HR) \]
Z-RAM Performance Factors
Memory Density vs. Speed

Average Access Time Vs. Hit Rate
(Assumes a 10x Miss Penalty Factor)

- Ta1=10, Ta2=100
- Ta1=12, Ta2=120
Z-RAM Performance Factors
Memory Density vs. Speed

• Step 4: Compare & Analyze

Larger yet ‘slower’ Cache can yield Lower Cost and Better Performance
Z-RAM Performance Factors
Memory Density vs. Speed

Z-RAM to SRAM Latency/Cost Analysis
(assumes 95% starting Hit Rate)

- Lower Cost & Better Performance Window
- Z-RAM / SRAM Average latency
 (<1 is better)
- Z-RAM/SRAM Cost
 (<1 is better)

Relative Z-RAM Latency & Cost

Z-RAM/SRAM Density
Z-RAM Performance Factors

- Memory Density vs. Speed
- Pipeline Operation
- Routing Impact
- Active Power
- Standby Power
Z-RAM Performance Factors
Pipeline Operation

• Array ‘busy’ time is typically 30% or less of the total access time
• This provides opportunity for pipelined operation (similar to eDRAM & eSRAM)
• Pipeline Operation Increases Maximum frequency by 3x
• Typical Internal Timing Breakdown with 256K Sub-arrays (65nm):

- Logic: 18%
- Decode: 19.1%
- Array Busy: 29.5%
- I/O Path: 33.4%

Burst of 4 yields 1.7Ghz sustained Output; limited by I/O path

• Logic and Array timing can be made faster (larger drivers, smaller sub-arrays)
Z-RAM Performance Factors
Pipeline Operation

• Other Options:
 • Multibank and or Burst Read Operation
 • Refresh During Burst
 • Write-Back During Burst
 • Controller: Is Write-Back Required?
 • Will the data be used again?
 • If not, then Write-back can be skipped
Z-RAM Performance Factors

- Memory Density vs. Speed
- Pipeline Operation
- Routing Impact
- Active Power
- Standby Power
Z-RAM Performance Factors
Routing Impact

• Key Parameters is total turn-around time for a memory access
 • Direct memory access time: 25% to 50% of Total Time
 • SRAM –Many Steps Required to Reduce Wire Delay
 – More Banks
 – Local & Global Sensing

• How much Does a Smaller Footprint Help?
 • Wire Delay across Macro can still be significant
 • Z-RAM: RC delays ~ 50% of SRAM
 • Can Translate into 5-15% Access time Savings

Reference: Interconnect Centric Array Architectures for Minimum SRAM Access Time, Bhavnagarwala et al., ICCD’01
Z-RAM Performance Factors

- Memory Density vs. Speed
- Pipeline Operation
- Routing Impact
- Active Power
- Standby Power
Z-RAM Performance Factors

Active Power

• Benefit of SOI Process

Low parasitic S/D cap., near ideal sub Vt slope
Operating power 3 times smaller vs. Bulk

Ref.: Y. Nagatomo, IEEE International SOI Conf., 2005
Z-RAM Performance Factors
Active Power

• Power Can Be Modulated by Architecture

• Can Reduce Active Power with:
 • Large Line Size
 • Longer Burst
 • Shorter Bitlines
 • Z-RAM Architecture allows large Line Size per Sub Array
 • Cell Pitch limited only by Bitline to Bitline Pitch
Z-RAM Performance Factors

- Memory Density vs. Speed
- Pipeline Operation
- Routing Impact
- Active Power
- Standby Power
Z-RAM Performance Factors
Standby Power

• Standby Current composed of Refresh Current and Peripheral Leakage Current
• Array Leakage is minimal
• In Standby:
 • Source = 0 Volts
 • Drain = 0 Volts
 • Gate = 0 Volts
 • 65nm SRAM Standby Power ~ 93mW/Mbit
 • Array Remains Powered Up
 • (16 MB L3 Cache on Intel Xeon processor, VLSI Conference 2006)
• At 65nm, total Z-RAM Standby Power is 50-90% Lower than SRAM Standby Power
Summary

• Z-RAM Embedded Memory is an exciting Technology
 • Compatible with standard SOI logic or memory process - No new materials
 • Small Cell Size/Low Cost
 • Scalable
 • Works for N and PMOS
 • Good SER Performance
 • Low Power
 • Application Configurable