Hardware and Applications of AsAP: An Asynchronous Array of Simple Processors

VLSI Computation Lab, ECE Department
University of California, Davis, USA
Outline

• Motivation and key features
• Architectural details
• The AsAP chip and results
• Programming and applications
• Conclusion
Target Applications and Objectives of the AsAP Processor

- Computationally intensive DSP and scientific apps
 - Key components in many systems
 - Require high performance
 - Limited power budgets
 - Require innovations in architecture and circuit design
- Objectives
 - High performance
 - High energy efficiency
 - Easy to program (high-level language)
 - Suitable for future fabrication technologies
Key Features of the AsAP Processor

- Chip multiprocessor → High performance
- Small memory & simple processor
 - Globally asynchronous locally synchronous (GALS)
 - Nearest neighbor communication → High energy efficiency
 - Technology scalability
Outline

• Motivation and key features
• **Architectural details**
• The AsAP chip and results
• Programming and applications
• Conclusion
Chip Multiprocessor and Task Level Parallelism

- Increasing the clock frequency is challenging; parallelism is more promising
- Task level parallelism is well suited for and widely available in many DSP applications

![Diagram showing parallel processing of tasks](image-url)

Improves performance and potentially reduces memory size
Small Memory Requirements for DSP Tasks

- Memory occupies much of the area in modern processors.
- The memory required for common DSP tasks is quite small.
- Several hundred words of memory are sufficient for many DSP tasks.

<table>
<thead>
<tr>
<th>Task</th>
<th>IMem (words)</th>
<th>DMem (words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-pt FIR</td>
<td>6</td>
<td>2N</td>
</tr>
<tr>
<td>8-pt DCT</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>8x8 2-D DCT</td>
<td>154</td>
<td>72</td>
</tr>
<tr>
<td>Conv. coding ((k = 7))</td>
<td>29</td>
<td>14</td>
</tr>
<tr>
<td>Huffman encode</td>
<td>200</td>
<td>330</td>
</tr>
<tr>
<td>N-pt convolution</td>
<td>29</td>
<td>2N</td>
</tr>
<tr>
<td>64-pt complex FFT</td>
<td>97</td>
<td>192</td>
</tr>
<tr>
<td>Bubble sort</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>N merge sort</td>
<td>50</td>
<td>N</td>
</tr>
<tr>
<td>Square root</td>
<td>62</td>
<td>15</td>
</tr>
<tr>
<td>Exponential</td>
<td>108</td>
<td>32</td>
</tr>
</tbody>
</table>
GALS Clocking Style and On Chip Communication

• The challenge of globally synchronous systems
 – Design difficulty due to high clock frequencies, long clock wires, and large circuit parameter variations
 – High clock power consumption and lack of flexibility to independently control clock frequencies

• The GALS clocking style addresses these challenges

• Global wires are a concern
 – Their length doesn’t shrink with technology scaling—assuming the chip size remains the same
 – AsAP uses nearest neighbor communication
AsAP Block Diagram

- GALS array of identical processors
 - Each processor is a reduced complexity programmable DSP with small memories
 - Each processor can receive data from any two neighbors and send data to any of its four neighbors
Single Processor Architecture

- 54 32-bit instructions, only Bit-Reverse is algorithm specific
- 16-bit datapath, 40-bit accumulator
- 9-stage pipeline
Programmable Clock Oscillator

• Configurable frequency
 – Tunable delay stages
 – 5 or 9 stage selection
 – 1 to 128 clock divider
• Circuit enables clean clock halting
• Results
 – 1.66 MHz – 702 MHz
 – Max gap: 0.08 MHz
 (1.66 – 500 MHz)
Inter-processor Communication

- Each processor contains two dual-clock FIFOs
- Rd/Wr in separate clock domains
 - Gray coded Rd/Wr address across clock domains
- No FIFO failures in several weeks of testing with multiple procs and no synch registers
Outline

- Motivation and key features
- Architectural details
- The AsAP chip and results
- Programming and applications
- Conclusion
Chip Micrograph of the 6 x 6 Array

Flow: Standard-cell based
Technology: TSMC 0.18 µm
Transistors:
- 1 Proc: 230,000
- Chip: 8.5 million
Max speed: 475 MHz @ 1.8 V
Area:
- 1 Proc: 0.66 mm²
- Chip: 32.1 mm²
Power (1 Proc @ 1.8V, 475 MHz):
 - Typical application: 32 mW
 - Typical 100% active: 84 mW
Power (1 Proc @ 0.9V, 116 MHz):
 - Typical application: 2.4 mW
Test Environment –
PC Board and FPGA Board
Measured Clock Waveforms

Valid for input

Clock of processor 1

Clock of processor 2

Valid for output

Data for output
Area Comparison

- Most of AsAP’s area is for the core (66%)
- Each processor requires a very small area; more than 20x smaller than others

All scaled to 0.13 µm

[ISSCC 05, 00; ISCA04; CMPON96]
Power and Performance

![Graph showing power and performance comparison between different processors.](image)

- **Power / Clock frequency / Scale** (mW/MHz)
- **Peak performance density** (MOPS/mm²)

Higher performance + area, and Lower estimated energy

- Blue: AsAP
- Orange: CELL/SPE
- Purple: Fujitsu-4VLIW
- Green: ARM
- Cyan: RAW
- Red: TI C64x

All scaled to 0.13 µm

* Assume 2 ops/cycle for CELL/SPE and 3.3 ops/cycle for TI C64x

Note: word widths and workload not factored

[ISSCC 05, 00; ISCA04; CMPON96]
Outline

• Motivation and key features
• Architectural details
• The AsAP chip and results
• Programming and applications
• Conclusion
Programming

• Write C program(s) for each task
• Connect programs with an arbitrary graph
• Auto-mapping tool
 – Maps to 2-D processor array
 – Adds routing processors if needed
 – Various optimization criteria
C Programs

- Generic C with a few exceptions
 - Saturating arithmetic
 - Special variables:
 - Ibuf0, Ibuf1: input ports
 - Obuf: output port

- Stalling and async behavior completely invisible

- Example CORDIC arcsin/arccos

```c
int atan[14];
int A = 26981, X = 16384;
int Y = 0, Z = 0;
int Xshft, Yshft, i;

Acc = A * Ibuf0;
Acc = Acc >> Ibuf0;

for (i=0; i<14; i=i+1) {
    Xshft = X >> i;
    Yshft = Y >> i;
    if (Y < Acc) {
        X = X - Yshft;
        Y = Y + Xshft;
        Z = Z - atan[i];
    } else {
        X = X + Yshft;
        Y = Y - Xshft;
        Z = Z + atan[i];
    }
}

Obuf = 0 - Z;
Obuf = Z + 12868;
```
Benchmarks and Applications
Ported to AsAP

- FIR filters (~100)
- Convolution
- Sorting (bubble, merge)
- Division
- Square root
- CORDIC sin, cos, arcsin, arccos, arctan
- Natural log
- Exponential e^x
- Pseudo random number generation
- CRC calculation
- Matrix multiplication
- Huffman encoder
- 8-point Discrete Cosine Transforms
- 8×8 2-D DCT (several)
- Fast Fourier Transforms (FFTs) of length 32-1024
- Full $k = 7$ viterbi decoder
- JPEG encoder
- Complete IEEE 802.11a/g wireless LAN baseband transmitter
JPEG Core Encoder Implementation

- 9 processors
- Fully functional on chip
- 224 mW @ 300 MHz
- ~1400 clock cycles for each 8x8 block
- Similar performance and ~11x lower energy dissipation than 8-way VLIW TI C62x

[MICRO 02, ISCAS 02]
802.11a/802.11g Wireless Transmitter Implementation

- 22 processors
- Fully functional on chip
- 407 mW @ 300 MHz
 30% of 54 Mb/s
- Code unscheduled and lightly optimized
- 5x - 10x performance and 35x – 75x lower energy dissipation than 8-way VLIW TI C62x

[SIPS 04; ICC 02]
Dataflow Animation
JPEG Encoder
Dataflow Animation
802.11a/g Baseband Transmitter

Input
Pad → Conv. Code → Punc → Interleave 1

Interleave 2 → Train → Insert → Mod. Map

IFFT Mem → IFFT BR → Pilot Insert

GI/Wind. → GI/Wind. → IFFT Output

FIR → Output Sync → Output

IFFT Processor/Memory pairs

Dataflow Animation
Dataflow Animation
802.11a/g Baseband Transmitter

Input → M → P → M → P → Output

IFFT Processor/
Memory pairs
Scaling to Hundreds and Thousands of Processors

• For the exact current design,
 – If implemented in 90 nm CMOS
 – Area slightly larger than 13mm ×13mm
 – Over 1000 processors
 – Clock rate almost 1 GHz
 – 1 TeraOp/sec peak throughput
 – Approximately 10-15 Watts application power + leakage

• Multi-application systems
• Self healing homogeneous architecture
Summary

• AsAP’s key features
 – Chip multiprocessor
 – Reduced complexity processors and interconnect
 • 0.66 mm² per processor in 0.18 μm
 – Fully independent clocking per processor
• High performance and energy efficient
 – 475 MHz standard cell implementation in 0.18 μm
 – 32 mW average application power at 1.8 V
 – 2.4 mW average application power at 0.9 V, 116 MHz
• Complex multi-task applications
• C compiler and auto-mapping tool
Acknowledgments

• Funding
 – Intel Corporation
 – UC Micro
 – NSF Grant No. 0430090
 – NSF CAREER award
 – MOSIS
 – Artisan
 – UCD Faculty Research Grant

• Special Thanks
 – R. Krishnamurthy, M. Anders, S. Mathew, S. Muroor, W. Li