Niagara-2: A Highly Threaded Server-on-a-Chip

Greg Grohoski
Distinguished Engineer
Sun Microsystems
Authors

- Jama Barreh
- Jeff Brooks
- Robert Golla
- Greg Grohoski
- Rick Hetherington
- Paul Jordan
- Mark Luttrell
- Chris Olson
- Manish Shah
Agenda

• Chip overview
• Sparc core
 > Execution Units
 > Power
 > RAS
• Summary
Niagara-2 Chip Goals

• Double throughput versus UltraSparc T1
 > Maintain Sparc binary compatibility
 > http://opensparc.sunsource.net/nonav/index.html

• Improve throughput / watt

• Improve single-thread performance

• Integrate important SOC components
 > Networking
 > Cryptography
Niagara-2 Chip Overview

- 8 Sparc cores, 8 threads each
- Shared 4MB L2, 8-banks, 16-way associative
- Four dual-channel FBDIMM memory controllers
- Two 10/1 Gb Enet ports w/onboard packet classification and filtering
- One PCI-E x8 1.0 port
- 711 signal I/O, 1831 total
Glossary

- CCX – Crossbar
- CCU – Clock control
- DMU/PEU – PCI Express
- EFU – Efuse (redundancy)
- ESR – Ethernet SERDES
- FSR – FBDIMM SERDES
- L2B – L2 write-back buffers
- L2D – L2 Data
- L2T – L2 tags
- MCU – Memory controller
- MIO – Miscellaneous I/O
- PSR – PCI-Express SERDES
- RDP/TDS/RTX/MAC – Ethernet
- SII/SIO – I/O datapath in/out to memory
- SPC – Sparc core
- TCU – Test control unit
Sparc Core Goals

- >2x throughput of UltraSparc T1
- Improve integer, floating-point performance
- Extend cryptographic support
 > Support relevant ciphers, hashes
 > Enable “free” encryption
- Optimum throughput/area and throughput/watt
 > Doubling cores vs. increasing threads/core
 > Utilization of execution units
Sparc Core Block Diagram

- **IFU** – Instruction Fetch Unit
 - 16 KB I$, 32B lines, 8-way SA
 - 64-entry fully-associative ITLB

- **EXU0/1** – Integer Execution Units
 - 4 threads share each unit
 - Executes one integer instruction/cycle

- **LSU** – Load/Store Unit
 - 8KB D$, 16B lines, 4-way SA
 - 128-entry fully-associative DTLB

- **FGU** – Floating/Graphics Unit

- **SPU** – Stream Processing Unit
 - Cryptographic acceleration

- **TLU** – Trap Logic Unit
 - Updates machine state, handles exceptions and interrupts

- **MMU** – Memory Management Unit
 - Hardware tablewalk (HWTW)
 - 8KB, 64KB, 4MB, 256MB pages
Core Pipeline

- 8 stages for integer operations:
 - Fetch, Cache, Pick, Decode, Execute, Memory, Bypass, Writeback
 - 3-cycle load-use
 - Memory (translation, tag/data access)
 - Bypass (late select, formatting)

- 12 stages for floating-point:
 - Fetch, Cache, Pick, Decode, Execute, FX1, FX2, FX3, FX4, FX5, FB, FW
 - 6-cycle latency for dependent FP ops
 - Longer pipeline for divide/sqrt
IFU Block Diagram

- Instruction cache, fetch/pick/decode logic for 8 threads
- Fetch up to 4 instructions from I$
 >$ Threads either in ready or wait state
 > Wait states: TLB miss, cache miss, instruction buffer full
 > Least-recently fetched among ready threads
 > One instruction buffer/thread
- No branch prediction
 > Predict not-taken, 5-cycle penalty
- Limited I$ miss prefetching
IFU Block Diagram

- Fetch decoupled from Pick
- Threads divided into 2 groups of 4 threads each
- One instruction from each thread group picked each cycle
 - Least-recently picked within a thread group among ready threads
 - Wait states: dependency, D$ miss, DTLB miss, divide/sqrt, ...
 - Gives priority to non-speculative threads (e.g. non-load hit)
- Decode resolves conflicts
 - Each thread group picks independently of the other
 - Both thread groups pick load/store or FGU instructions
Threaded Execution

IFU

TG0

IB0-3

P0

D2

E0

M3

B1

W2

TG1

IB4-7

P5

D7

E6

M4

B7

W6

LSU

M4

B1

W6
EXU

- Executes integer operations
 - Some graphics operations
- Each EXU contains state for 4 threads
 - Integer register file (IRF) contains 8 register windows per thread
 - Window management logic (RML)
 - Adder, shifter
- Generates addresses for load/store operations
LSU

- One load or store per cycle
 - D$ is store-through
 - D$ fills in parallel with stores
- Load Miss Queue (LMQ)
 - One pending load miss per thread
 - D$ allocates on load misses, updates on store hits
- Store buffer (STB) contains 8 stores/thread
 - Stores to same L2 cache line are pipelined to L2
- Arbitrates between load misses, stores for crossbar
 - Fairness algorithm
MMU

- Hardware tablewalk of up to 4 page tables
- Each page table supports one page size
- Three search modes:
 - Sequential – search page tables in order
 - Burst – search page tables in parallel
 - Prediction – predict page table to search based upon VA
 - Two-bit predictor for ordering first two page table searches
- Up to 8 pending misses
 - ITLB or DTLB miss per thread
FGU

- Fully-pipelined (except divide/sqrt)
 > Divide/sqrt in parallel with add or multiply operations of other threads
- FGU performs integer multiply, divide, population count
- Multiplier enhancements for modular arithmetic operations
 > Built-in accumulator
 > XOR multiply
SPU

- Cryptographic coprocessor
 > Runs in parallel w/core at same frequency
- Two independent sub-units
 > Modular Arithmetic
 > RSA, binary and integer polynomial elliptic curve (ECC)
 > Shares FGU multiplier
 > Ciphers / Hashes
 > RC4, DES/3DES, AES-128/192/256
 > MD5, SHA-1, SHA-256
 > Designed to achieve wire-speed on both 10Gb Ethernet ports
- DMA engine shares crossbar port w/core
Core Power Management

• Minimal speculation
 > Next sequential I$ line prefetch
 > Predict branches not-taken
 > Predict loads hit in D$
 > Hardware tablewalk search control

• Extensive clock gating
 > Datapath
 > Control blocks
 > Arrays

• External power throttling
 > Add wait states at decode stage
Core Reliability and Serviceability

• Extensive RAS features
 > Parity-protection on I$, D$ tags and data, ITLB, DTLB CAM and data, modular arithmetic memory, store buffer address
 > ECC on integer RF, floating-point RF, store buffer data, trap stack, other internal arrays

• Combination of hardware and software correction flows
 > Hardware re-fetch for I$, D$
 > Software recovery for other errors
 > Offline a thread, group of threads, or physical core if error rate too high
Summary

• Niagara-2 combines all major server functions on one chip
• >2x throughput and throughput/watt vs. UltraSparc T1
• Greatly improved floating-point performance
• Significantly improved integer performance
• Embedded wire-speed cryptographic acceleration
• Enables new generation of power-efficient, fully-secure datacenters
Thank you ...

gregory.grohoski@sun.com