Professional H.264/AVC CODEC Chip-set for High-quality HDTV Broadcast Infrastructure and High-end Flexible CODEC Systems

Mitsuo Ikeda, Hiroe Iwasaki, Koyo Nitta, Takayuki Onishi, Takashi Sano, Atsushi Sagata, Yasuyuki Nakajima, Mioru Inamori, Takeshi Yoshitome, Hiroaki Matsuda, Ryuichi Tanida, Atsushi Shimizu, Ken Nakamura, and Jiro Naganuma

NTT Cyber Space Laboratories
Nippon Telegraph and Telephone Corporation Japan
Outline

- History of NTT’s Video CODEC Chips
- Background and Motivation
- What is HDTV Broadcast Infrastructure
- SARA Key Features and Functions
- SARA Main Architecture
- SARA Chip Implementation
- SARA High-end Flexible CODEC Systems
- Summary
History of NTT’s Video CODEC LSIs

ENC-C/-M (’95) (HotChips7)

SuperENC (’98) (HotChips10)

Encoder PC Card (ICCE2000)

Portable HDTV Encoder (ICCE2001) SuperENCx9

SDTV HDTV

HDTV Camera (NAB2001)

Encoder PCI Board (Globecom95)

ISIL-BOX (CoolChips2006)

SHR (NAB2004)

ISIL (’02) (CICC2003)

NHK/NTT-COM (News2002)

ISIL-II (’07) (CoolChips2007)

VASA (’02) (HotChips14)

Professional:
- DTV Service
- Super HD

Consumer/Prosumer:
- HDV Camera
- Video Phone

MPEG2 H.264

SARA* (’07) (HotChips19)

(*)SARA: Super Advanced Real-time CODEC Architecture for H.264 professional implementations

Copyright 2007, Nippon Telegraph and Telephone Corporation
Background and Motivation

- Global wave of H.264 technologies for high efficiency video coding of various HDTV applications.
 - Storage: BD, HD-DVD, AVCHD of optical disc and video camera for consumer.
 - Broadcasting: future digital broadcasts of several countries with Europe DVB-H, Japanese ISDB-T, and US-ATSC have been scheduled already.
 - Main carriers in the world, NTT also, have announced IP-based visual services, IPTV, VOD, and re-transmission of airwave, via IP-broadband network.

- Available chips are …
 - Domino[X], Ambarella, SONY, Fujitsu, … for consumer,
 - Telairity (processor-based) for professional (Hot Chips17) and so on.

- There are few chips with sufficient performance and flexibility for professional applications.

- **SARA**: Professional H.264/AVC CODEC Chip-set for HDTV Broadcast Infrastructure and High-end Flexible CODEC Systems.
What is HDTV Broadcast Infrastructure

Digital TV Broadcasting Network Service (NTT Communications)
-- HDTV Transmission network for terrestrial digital broadcasting in Japan --

NTT-Com

Local TV Station

Embedded VASA

HDTV CODEC

NTT Com

Contribution Transmission

Edge

HDTV CODEC

Various High-end CODEC Systems

NTT
Various High-end CODEC Systems

MPEG-2 VASA’s Application Examples in Japan

- Compactness
- Low-power
- High-quality

Distribution System

- Low-bitrate
- High-quality

Interruption System

- Low-delay
- High-bitrate
- High-quality

Contribution System

Tandem & Transcoder

Low-delay HDTV Encoder

Portable Microwave Link

NHK/NTT-COM

NTT/NEC
SARA Key Features and Functions

- **H.264 high-quality CODEC for professional applications**
 - Contribution: 4:2:2, CBR, low-delay and high-bitrate
 - Distribution: 4:2:0, CBR, low-bitrate (high-compression)
 - Storage: 4:2:2/4:2:0, VBR

- **Real-time {H.264:MPEG-2} transcoding using recoding information and/or external preprocessing information**

- **Wide range of coding-modes for efficient encoding and transcoding** (CABAC/CAVLC, weighted prediction, variation of multiple reference frames, etc)

- **Preprocessing of picture characteristics extraction**

- **High-precision adaptive hierarchical motion estimation with optimized H.264's mode decision**

- **Dynamic selective entropy coding (CABAC/CAVLC)**
H.264 Algorithms and their Mapping

- Current image
- Coder Control
- Intra Prediction
- Motion Compensation
- Motion Estimation
- Transform
- Q
- Entropy Coding
- Inv. Transform
- Inv.Q
- Loop Filter
- Reconstructed images

- Video Encoder Core
- RISCs
- IPD
- ME
- MC
- TQ
- EC
- LF

- Data Transfer
- Memory Interface

Copyright 2007, Nippon Telegraph and Telephone Corporation
SARA Architecture (Block Diagram)

Host Processor

Communication Data

TRISC

V-CORE

VRISC

SME

TME

FME

IPD

C-CORE

CRISC

EC

LF

TQ

From/to Upper chip

From/to Lower chip

Video Data

Audio/user Data

TS

From/toUpper chip

From/to Lower chip

Mobile DDR

eDRAM

Multiplication Core Encoding Scheme

Copyright 2007, Nippon Telegraph and Telephone Corporation
Photograph of SARA
SARA Physical Features

<table>
<thead>
<tr>
<th>Technology</th>
<th>90nm CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of transistors</td>
<td>140 million transistors</td>
</tr>
<tr>
<td>Clock frequency</td>
<td>200 MHz/ Max.</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>Core: 1.2 V / I/O: 3.3 V / eDRAM: 2.5 V / Mobile DDR 1.8 V</td>
</tr>
<tr>
<td>Power consumption</td>
<td>3.0 W/ Max.</td>
</tr>
<tr>
<td>Package</td>
<td>625-pin FCBGA (21mm x 21 mm)</td>
</tr>
<tr>
<td>External memories</td>
<td>512 Mbit (32 bit) Mobile-DDR</td>
</tr>
</tbody>
</table>
SARA Function Features

<table>
<thead>
<tr>
<th>Video</th>
<th>Profile and level</th>
<th>Search range</th>
<th>Resolution and video rate</th>
<th>Transcoding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Profile: H.264 Main / High / High422(8bit only)</td>
<td>-217.75/+199.75(H), -109.75/+145.75(V)</td>
<td>Encoding: Single-chip: 720 x 480 at up to 30 frames per second</td>
<td>Combination of H.264/MPEG-2 input and H.264/MPEG-2 output using recoding and/or our original information</td>
</tr>
<tr>
<td></td>
<td>Level: 3.0 / 4.0 / 4.1</td>
<td></td>
<td>Multi-chip: 1920 x 1080 at up to 30 frames per second</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MPEG-2 {MP, 422P} @ {ML, HL}</td>
<td></td>
<td>Decoding: 720 x 480 at up to 30 frames per second</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1920 x 1080 at up to 30 frames per second</td>
<td></td>
</tr>
<tr>
<td>Pre-processing</td>
<td>Macroblock based functional filters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Macroblock based feature extraction functions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio</td>
<td>I/O Format</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linear PCM or Encoded stream (AAC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Handling by external audio codec</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User</td>
<td>I/O Format</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PES format for timecode and another audio data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>I/O Format and Bitrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MPEG-2 TS(188/204 bytes) Max. 120 Mbps</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SARA Multi-chip HDTV Module

Very Compact Post-card-size HDTV Module with transcoding capability
SARA Evaluation and Validation

Before fabrication,
HW/SW were carefully evaluated and validated using VCS and ASIC emulator through small- and/or full-size images.

After fabrication,
HW/SW were evaluated and validated using SARA CODEC evaluation boards.

The first silicon is successfully implemented with complete software.
High-end Flexible CODEC Systems

- Very compact post-card-size HDTV modules with transcoding capability.
- Building-block based flexible CODEC systems for various professional applications,
 - MPEG-2/H.264 real-time transcoder for IP based H.264 re-transmission from radio wave broadcasting (MPEG-2),
 - H.264/H.264 real-time transcoder for future complete H.264-based digital TV broadcasting,
 - H.264-based tandem (two-passed) encoding for higher-compression (lower-bitrate) of final distribution.

SARA Modules

Module-IF With FPGA

Module-IF with FPGA(ENC/DEC)

CODEC Board IF

Several CODEC Combinations
SARA Flexible CODEC System (1/2)

SARA H.264
(Encoder Module)

SARA High-Quality Encoder System
SARA Flexible CODEC System (2/2)

VASA MPEG-2
(Decoder Module)

SARA H.264
(Encoder Module)

SARA MPEG-2/H.264 Transcoder System
Summary

- Background and Motivation
- HDTV Broadcast Infrastructure
- SARA Main Architecture
 - H.264 Algorithms and their Mapping
 - Block Diagram and its MB Pipelined Scheme
- SARA Implementation
 - Physical & Functional Features
- SARA High-end Flexible CODEC System
 - High-quality Encoder System
 - MPEG-2/H.264 Transcoder System

SARA is a **key LSI** for implementing various professional H.264/MPEG-2 applications for future broadcast infrastructure.