The Roofline Model:
A pedagogical tool for program analysis and optimization

Samuel Williams1,2, David Patterson1,
Leonid Oliker1,2, John Shalf2, Katherine Yelick1,2

1University of California, Berkeley
2Lawrence Berkeley National Laboratory

samw@cs.berkeley.edu
Outline

- Motivation, Goals, Audience, etc…
- Survey of multicore architectures
- Description of the Roofline model
- Introduction to Auto-tuning
- Application of the roofline to auto-tuned kernels
 - Example #1 - SpMV
 - Example #2 - LBMHD
- Conclusions
Motivation

- Multicore guarantees neither good scalability nor good (attained) performance
- Performance and scalability can be extremely non-intuitive even to computer scientists

- Success of the multicore paradigm seems to be premised upon their programmability
- To that end, one must understand the limits to both scalability and efficiency.

 - How can we empower programmers?
Primary Focus

- Throughput-oriented kernels (rather than time)
- Our performance metrics are: \textbf{Gflop/s and \% of peak} (efficiency)

\textit{for purposes of this talk, I will focus on memory-intensive 64b floating-point SPMD kernels.}

- Not focused on algorithmic innovation or computational complexity
Goals & Audience

❖ Goals for Roofline:
 ▪ Provide everyone (especially undergrads) with a graphical aid that provides: **realistic expectations of performance and productivity**
 ▪ Show inherent hardware limitations for a given kernel
 ▪ Show potential benefit and priority of optimizations

❖ Who’s not the audience for the Roofline:
 ▪ Not for those interested in fine tuning (+10%)
 ▪ Not for those challenged by parallel kernel correctness
Multicore SMPs of Interest

(used throughout the rest of the talk)
Multicore SMPs Used

Intel Xeon E5345 (Clovertown)

AMD Opteron 2356 (Barcelona)

Sun T2+ T5140 (Victoria Falls)

IBM QS20 Cell Blade
Multicore SMPs Used

Intel Xeon E5345 (Clovertown)

AMD Opteron 6356 (Barcelona)

Sun T91-15140 (Victoria Falls)

IBM QS20 Cell Blade

Conventional Cache-based Memory Hierarchy

Disjoint Local store Memory Hierarchy
Multicore SMPs Used

Intel Xeon E5345 (Clovertown)

Opteron

HyperTransport

AMD Opteron 2356 (Barcelona)

4GB/s (each direction)

HyperTransport

4GB/s (each direction)

667MHz DDR2 DIMMs

667MHz DDR2 DIMMs

Sun T2+ T5140 (Victoria Falls)

IBM QS20 Cell Blade

512MB XDR DRAM

512MB XDR DRAM

667MHz FBDIMMs

667MHz FBDIMMs
Multicore SMPs Used

(peak double precision flops)

Intel Xeon E5345 (Clovertown)

75 GFlop/s

AMD Opteron 2356 (Barcelona)

74 Gflop/s

Sun T2+ T5140 (Victoria Falls)

19 GFlop/s

IBM QS20 Cell Blade

29* GFlop/s

*SPEs only
Multicore SMPs Used

(total DRAM bandwidth)

<table>
<thead>
<tr>
<th>System</th>
<th>DRAM Bandwidth</th>
<th>Memory Controllers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Xeon E5345 (Clovertown)</td>
<td>21 GB/s (read)</td>
<td>2x64b memory controllers</td>
</tr>
<tr>
<td></td>
<td>10 GB/s (write)</td>
<td></td>
</tr>
<tr>
<td>AMD Opteron 2356 (Barcelona)</td>
<td>21 GB/s</td>
<td></td>
</tr>
<tr>
<td>Sun T2+ T5140 (Victoria Falls)</td>
<td>42 GB/s (read)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21 GB/s (write)</td>
<td></td>
</tr>
<tr>
<td>IBM QS20 Cell Blade</td>
<td>51* GB/s</td>
<td></td>
</tr>
</tbody>
</table>

*SPEs only
Roofline models for multicore SMPs

(for memory-intensive double precision floating-point kernels)
Arithmetic Intensity in HPC

- True Arithmetic Intensity (AI) ~ Total Flops / Total DRAM Bytes
 - constant with respect to problem size for many problems of interest
 - ultimately limited by compulsory traffic
 - diminished by conflict or capacity misses.
Naïve Roofline Model

- Based on **Bound and Bottleneck analysis**

- Performance is upper bounded by both the peak flop rate, and the product of streaming bandwidth and the flop:byte ratio

- (well understood in the performance oriented communities)

\[
\text{Gflop/s}(\text{AI}) = \min \left\{ \begin{array}{l}
\text{Peak Gflop/s} \\
\text{AI} \times \text{StreamBW}
\end{array} \right\}
\]

where AI is the actual arithmetic intensity

- Assumptions:
 - Bandwidth is independent on arithmetic intensity
 - Bandwidth is independent of optimization or access pattern
 - Computation is independent of optimization
 - Complete overlap of either communication or computation

\(^{1}\text{D. Lazowska, J. Zahorjan, G. Graham, K. Sevcik,}
\quad \text{“Quantitative System Performance”}
Roofline Model

Log scale!

Log scale!
Naïve Roofline Model

- Unrealistically optimistic model
- Hand optimized Stream BW benchmark

Graphs showing the relationship between flop:DRAM byte ratio and attainable Gflop/s for Intel Xeon E5345 (Clovertown), Opteron 2356 (Barcelona), Sun T2+ T5140 (Victoria Falls), and IBM QS20 Cell Blade.

- Peak DP
- Hand optimized Stream BW benchmark
Naïve Roofline Model

- Unrealistically optimistic model
- Hand optimized Stream BW benchmark

This level of performance is only attainable with extensive optimizations.
Naïve Roofline Model

How sensitive is each architecture to removing those optimizations?

- Unrealistically optimistic model
- Hand optimized Stream BW benchmark
Better Roofline

- Collect StreamBW_j with progressively fewer optimizations
- Estimate InCoreGFlops_i with progressively fewer optimizations

$$\text{GFlops}_{i,j}(\text{AI}) = \min \left\{ \begin{array}{c} \text{InCoreGFlops}_i \\ \text{AI} * \text{StreamBW}_j \end{array} \right\}$$

is the attainable performance with:
memory optimizations$_{1...i}$ - and -
in-core optimizations$_{1..j}$

- These denote a series of ceilings below the roofline

- Assumptions:
 - Bandwidth is independent on arithmetic intensity
 - Complete overlap of either communication or computation
Roofline models
(dram bandwidth)

- What happens as bandwidth optimizations are stripped out?
- Form a series of bandwidth ceilings below the roofline
- Small problems fit in the snoop filter in Clovertown's MCH
- Most architectures see NUMA and prefetch variations
Roofline models
(dram bandwidth)

- What happens as bandwidth optimizations are stripped out?
- Form a series of bandwidth ceilings below the roofline
- Small problems fit in the snoop filter in Clovertown's MCH
- Most architectures see NUMA and prefetch variations
Roofline models
(dram bandwidth)

- What happens as bandwidth optimizations are stripped out?
- Form a series of bandwidth ceilings below the roofline
- Small problems fit in the snoop filter in Clovertown's MCH
- Most architectures see NUMA and prefetch variations
Roofline models
(dram bandwidth)

- What happens as bandwidth optimizations are stripped out?
- Form a series of bandwidth ceilings below the roofline
- Small problems fit in the snoop filter in Clovertown's MCH
- most architectures see NUMA and prefetch variations
Roofline models
(dram bandwidth)

- What happens as bandwidth optimizations are stripped out?
- Form a series of bandwidth ceilings below the roofline
- Small problems fit in the snoop filter in Clovertown's MCH
- most architectures see NUMA and prefetch variations

<table>
<thead>
<tr>
<th>Processor</th>
<th>Flop:DRAM Byte Ratio</th>
<th>Attainable GFlop/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Xeon E5345 (Clovertown)</td>
<td>1/16, 1/8, 1/4, 1/2</td>
<td>1, 2, 4, 8</td>
</tr>
<tr>
<td>Opteron 2356 (Barcelona)</td>
<td>1/16, 1/8, 1/4, 1/2</td>
<td>1, 2, 4, 8</td>
</tr>
<tr>
<td>Sun T2+ T5140 (Victoria Falls)</td>
<td>1/16, 1/8, 1/4, 1/2</td>
<td>1, 2, 4, 8</td>
</tr>
<tr>
<td>IBM QS20 Cell Blade</td>
<td>1/16, 1/8, 1/4, 1/2</td>
<td>1, 2, 4, 8</td>
</tr>
</tbody>
</table>
Roofline models
(dram bandwidth)

What happens as bandwidth optimizations are stripped out?

Form a series of bandwidth ceilings below the roofline

Small problems fit in the snoop filter in Clovertown’s MCH

most architectures see NUMA and prefetch variations
In-core Performance

- Define a similar set of ceilings for in-core performance

- In-core performance can be limited by (among other things):
 - Not satisfying all forms of **in-core parallelism**:
 - Instruction-level parallelism (multi-issue, pipeline, …)
 - Data-level parallelism (SIMD)
 - Functional unit parallelism (adders + multipliers + …)
 - Non-FP instructions can consume **instruction issue bandwidth**
 - As the FP fraction decrease, how sensitive is attainable performance?

- One or the other is usually more difficult to satisfy on a given architecture/kernel
 = **Architecture’s Achilles’ Heel**
Roofline models
(in-core performance = in-core parallelism?)

- Covering the breadth of in-core parallelism is the preeminent challenge on most architectures
- Form a series of parallelism ceilings below the roofline
- On Niagara machines, instruction latencies are easily hidden with 8-way multithreading
Roofline models
(in-core performance = instruction mix?)

- All machines have a limited instruction issue bandwidth.
- non-FP instructions sap instruction issue bandwidth needed by FP instructions
- As the FP fraction of the dynamic instruction mix decreases, so might performance.
- On Cell, double precision instructions stall subsequent issues for 7 cycles.
Roofline models
(Achilles' Heel)

- It's clear that in-core parallelism is more important on the superscalars.
- Instruction mix is more important on Niagara2.
- Each architecture has its own Achilles' Heel when it comes to in-core performance.
The ceilings act to constrain performance to a much smaller region.
Roofline models
(ceilings constrain performance)

The ceilings act to constrain performance to a much smaller region
Roofline models
(thickness)

The ceilings act to constrain performance to a much smaller region.

The thickness of the roofline is indicative of requisite compiler or SW complexity.
Three Categories of Software Optimization
Optimization Categorization

Maximizing In-core Performance

- Exploit in-core parallelism (ILP, DLP, etc…)
- Good (enough) floating-point balance

Maximizing Memory Bandwidth

- Exploit NUMA
- Hide memory latency
- Satisfy Little’s Law

Minimizing Memory Traffic

- Eliminate:
 - Capacity misses
 - Conflict misses
 - Compulsory misses
 - Write allocate behavior

- Unroll & reorder
- Reorder
- Explicit SIMD
- Eliminate branches
- SW prefetch
- Unit-stride streams
- MEM affinity streams
- DMA lists
- TLB blocking
- Array padding
- Cache blocking
- Compress data
- Streaming stores
Maximizing Attained in-core Performance

Compilers may not have as much knowledge as the programmer

Express more in-core parallelism and amortize non-FP instructions

Software optimizations:
- Explicit SIMDization
- Loop unrolling
- Unroll and jam
- Reordering
- Predication

Punch through ceilings
Maximizing Attained Memory Bandwidth

- Compilers won’t give great out-of-the-box bandwidth
- Optimizations:
 - long unit stride accesses
 - NUMA aware allocation and parallelization
 - SW prefetching
 - Maximize MLP
- Punch through bandwidth ceilings
Minimizing Total Memory Traffic

- Use performance counters to measure flop:byte ratio (AI)
- Out-of-the-box code may have an AI ratio much less than the compulsory ratio
- Optimizations:
 - Array padding: conflict
 - Cache blocking: capacity
 - Cache bypass: compulsory
- **Push arithmetic intensity to the compulsory limit**
Optimization Categorization

Maximizing In-core Performance
- Exploit in-core parallelism (ILP, DLP, etc…)
- Good (enough) floating-point balance

Maximizing Memory Bandwidth
- Exploit NUMA
- Hide memory latency
- Satisfy Little’s Law

Maximizing Memory Bandwidth
- Unit-stride streams
- Memory affinity
- DMA lists
- TLB blocking

Minimizing Memory Traffic
- Eliminate: Capacity misses
- Conflict misses
- Compulsory misses
- Write allocate behavior
- Array padding
- Cache blocking
- Streaming stores
- Compress data

Each optimization has a large parameter space. What are the optimal parameters?
Introduction to Auto-tuning
Out-of-the-box Code

- Out-of-the-box code has (unintentional) assumptions on:
 - cache sizes (>10MB)
 - functional unit latencies (~1 cycle)
 - etc…

- These assumptions may result in poor performance when they exceed the machine characteristics
What is auto-tuning?

- Goal: provide performance portability across the existing breadth and evolution of microprocessors
- At the expense of a one time up front productivity cost that’s amortized by the number of machines its used on
- Auto-tuning does not invent new optimizations
- **Auto-tuning automates the exploration of the optimization and parameter space**
- Two components:
 1. parameterized code generator (we wrote ours in Perl)
 2. Auto-tuning exploration benchmark
 (combination of heuristics and exhaustive search)
- Can be extended with ISA specific optimizations (e.g. DMA, SIMD)
Distinguishing the Roofline and Auto-tuning

- Roofline specifies what's deficient, but not how to fix it.

- Auto-tuning attempts to fix it by searching the parameter space for the existing body of optimization work.
Application of the Roofline Model to sample Kernels

Does the roofline model provide insight into the limitations of architecture, implementation, and algorithm?
Things to watch for:

1. do performance graphs alone provide insight into the limitations of kernel or architecture?

2. does the roofline show the ultimate performance limitations of kernel and architecture?

3. does the roofline show which optimizations will be necessary?
Example #1: Auto-tuning Sparse Matrix-Vector Multiplication (SpMV)

Sparse Matrix Vector Multiplication

- **What’s a Sparse Matrix?**
 - Most entries are 0.0
 - Performance advantage in only storing/operating on the nonzeros
 - Requires significant meta data to reconstruct the matrix structure

- **What’s SpMV?**
 - Evaluate \(y = Ax \)
 - \(A \) is a sparse matrix, \(x \) & \(y \) are dense vectors

- **Challenges**
 - **Very low arithmetic intensity** (often <0.166 flops/byte)
 - Difficult to exploit ILP (bad for superscalar),
 - Difficult to exploit DLP (bad for SIMD)

(a) algebra conceptualization
(b) CSR data structure
(c) CSR reference code

```c
for (r=0; r<A.rows; r++) {
    double y0 = 0.0;
    for (i=A.rowStart[r]; i<A.rowStart[r+1]; i++){
        y0 += A.val[i] * x[A.col[i]];
    }
    y[r] = y0;
}
```
The Dataset (matrices)

- Unlike dense BLAS, performance is dictated by sparsity
- Suite of 14 matrices
- All bigger than the caches of our SMPs
- We’ll also include a median performance number

2K x 2K Dense matrix stored in sparse format

Well Structured (sorted by nonzeros/row)
- Protein
- FEM / Spheres
- FEM / Cantilever
- Wind Tunnel
- FEM / Harbor
- QCD
- FEM / Ship
- Economics
- Epidemiology

Poorly Structured hodgepodge
- FEM / Accelerator
- Circuit
- webbase

Extreme Aspect Ratio (linear programming)
- LP
SpMV Performance
(simple parallelization)

- Out-of-the-box SpMV performance on a suite of 14 matrices
- Scalability isn’t great
- Is this performance good?
Auto-tuned SpMV Performance
(architecture specific optimizations)

- Fully auto-tuned SpMV performance across the suite of matrices
- Included SPE/local store optimized version
- Why do some optimizations work better on some architectures?
- **Performance is better, but is performance good?**

Xeon E5345 (Clovertown)

Opteron 2356 (Barcelona)

UltraSparc T2+ T5140 (Victoria Falls)

QS20 Cell Blade (SPEs)

- +Cache/LS/TLB Blocking
- +Matrix Compression
- +SW Prefetching
- +NUMA/Affinity
- Naïve Pthreads
- Naïve
Auto-tuned SpMV Performance
(architecture specific optimizations)

- Fully auto-tuned SpMV performance across the suite of matrices
- Included SPE/local store optimized version
- Why do some optimizations work better on some architectures?
- Performance is better, but is performance good?

Auto-tuning resulted in better performance, but did it result in good performance?
Roofline model for SpMV

- Double precision roofline models
- FMA is inherent in SpMV (place at bottom)
Roofline model for SpMV
(overlay arithmetic intensity)

- Two unit stride streams
- Inherent FMA
- No ILP
- No DLP
- FP is 12-25%
- Naïve compulsory flop:byte < 0.166

No naïve Cell implementation
Roofline model for SpMV
(out-of-the-box parallel)

- Two unit stride streams
- Inherent FMA
- No ILP
- No DLP
- FP is 12-25%
- Naïve compulsory flop:byte < 0.166
- For simplicity: dense matrix in sparse format

Intel Xeon E5345 (Clovertown)
- peak DP
- w/out SIMD
- w/out ILP
- mul/add imbalance

Opteron 2356 (Barcelona)
- peak DP
- w/out SIMD
- w/out ILP
- mul/add imbalance

Sun T2+ T5140 (Victoria Falls)
- peak DP
- 25% FP
- 12% FP

IBM QS20 Cell Blade
- No naïve Cell implementation
Roofline model for SpMV
(NUMA & SW prefetch)

- compulsory flop:byte ~ 0.166
- utilize all memory channels

Intel Xeon E5345 (Clovertown)

Opteron 2356 (Barcelona)

Sun T2+ T5140 (Victoria Falls)

IBM QS20 Cell Blade

- No naïve Cell implementation
Roofline model for SpMV
(matrix compression)

- Inherent FMA
- Register blocking improves ILP, DLP, flop:byte ratio, and FP% of instructions
Inherent FMA

Register blocking improves ILP, DLP, flop:byte ratio, and FP% of instructions

All machines are on the bandwidth roofline!
Example #2:
Auto-tuning Lattice-Boltzmann Magneto-Hydrodynamics (LBMHD)

Best Paper, Application Track
Plasma turbulence simulation via Lattice Boltzmann Method

Two distributions:
- momentum distribution (27 scalar components)
- magnetic distribution (15 vector components)

Three macroscopic quantities:
- Density
- Momentum (vector)
- Magnetic Field (vector)

Arithmetic Intensity:
- Must read 73 doubles, and update 79 doubles per lattice update (1216 bytes)
- Requires about 1300 floating point operations per lattice update
- Just over 1.0 flops/byte (ideal)

Out-of-the-box, no unit stride memory access patterns
Initial LBMHD Performance

- Generally, scalability looks good
- but is performance good?

![Graphs showing performance comparison](image-url)
Auto-tuned LBMHD Performance
(architecture specific optimizations)

- Auto-tuning avoids cache conflict and TLB capacity misses
- Additionally, it exploits SIMD where the compiler doesn’t
- Include a SPE/Local Store optimized version

Xeon E5345 (Clovertown)
- +SIMD
- +Prefetch
- +Unrolling
- +Vectorization
- +Padding
- original

Opteron 2356 (Barcelona)
- +SIMD
- +Prefetch
- +Unrolling
- +Vectorization
- +Padding
- original

UltraSparc T2+ T5140 (Victoria Falls)
- +small pages
- +Explicit SIMDization
- +SW Prefetching
- +Unrolling
- +Vectorization
- +Padding
- Naïve+NUMA

QS20 Cell Blade (SPEs)
Roofline model for LBMHD

- Far more adds than multiplies (imbalance)
- Huge data sets

Intel Xeon E5345 (Clovertown)
- Mul/add imbalance
- w/out SIMD

Opteron 2356 (Barcelona)
- Mul/add imbalance
- w/out SIMD

Sun T2+ T5140 (Victoria Falls)
- 25% FP
- 12% FP

IBM QS20 Cell Blade
- w/out FMA
- w/out ILP
- w/out SIMD
Roofline model for LBMHD
(overlay arithmetic intensity)

- Far more adds than multiplies (imbalance)
- Essentially random access to memory
- Flop:byte ratio ~0.7
- NUMA allocation/access
- Little ILP
- No DLP
- High conflict misses

Intel Xeon E5345 (Cloverfield)

Sun T2+ T5140 (Victoria Falls)

IBM QS20 Cell Blade

No naïve Cell implementation
Roofline model for LBMHD
(out-of-the-box parallel performance)

- Far more adds than multiplies (imbalance)
- Essentially random access to memory
- Flop:byte ratio ~0.7
- NUMA allocation/access
- Little ILP
- No DLP
- High conflict misses

Peak VF performance with 64 threads (out of 128) - high conflict misses

No naïve Cell implementation
Roofline model for LBMHD
(Padding, Vectorization, Unrolling, Reordering, …)

- Vectorize the code to eliminate TLB capacity misses
- Ensures unit stride access (bottom bandwidth ceiling)
- Tune for optimal VL
- Clovertown pinned to lower BW ceiling

Single-Cycle Achievable GFlop/s

<table>
<thead>
<tr>
<th>System</th>
<th>flop:DRAM Byte Ratio</th>
<th>peak DP</th>
<th>mul/add imbalance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Xeon E5345</td>
<td>$1/16$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1/8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1/4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1/2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single-Cycle Achievable GFlop/s

<table>
<thead>
<tr>
<th>System</th>
<th>flop:DRAM Byte Ratio</th>
<th>peak DP</th>
<th>mul/add imbalance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opteron 2356</td>
<td>$1/16$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1/8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1/4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1/2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single-Cycle Achievable GFlop/s

<table>
<thead>
<tr>
<th>System</th>
<th>flop:DRAM Byte Ratio</th>
<th>peak DP</th>
<th>mul/add imbalance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun T2+ T5140</td>
<td>$1/16$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1/8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1/4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1/2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single-Cycle Achievable GFlop/s

<table>
<thead>
<tr>
<th>System</th>
<th>flop:DRAM Byte Ratio</th>
<th>peak DP</th>
<th>mul/add imbalance</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM QS20 Cell Blade</td>
<td>$1/16$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1/8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1/4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1/2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No naïve Cell implementation
Roofline model for LBMHD
(SIMDization + cache bypass)

- Make SIMDization explicit
- Technically, this swaps ILP and SIMD ceilings
- Use cache bypass instruction: `movntpd`
- Increases flop:byte ratio to ~1.0 on x86/Cell
Roofline model for LBMHD
(SIMDization + cache bypass)

- Make SIMDization explicit
- Technically, this swaps ILP and SIMD ceilings
- Use cache bypass instruction: `movntpd`
- Increases flop:byte ratio to ~1.0 on x86/Cell

3 out of 4 machines hit the Roofline
Conclusions
The Roofline model is a visually intuitive figure for kernel analysis and optimization.

We believe undergraduates will find it useful in assessing performance and scalability limitations.

It is easily extended to other architectural paradigms.

We believe it is easily extendable to other metrics:
- performance (sort, graphics, crypto…)
- bandwidth (L2, PCIe, …)

We believe that a performance counters could be used to generate a runtime-specific roofline that would greatly aide the optimization.
Suggestion...

- As architectures are presented over the next two days, we invite you to create a roofline model for each.
- Estimate the ceilings.

- Then contemplate performance and productivity among them
Acknowledgements

Research supported by:
- Microsoft and Intel funding (Award #20080469)
- DOE Office of Science under contract number DE-AC02-05CH11231
- NSF contract CNS-0325873
- Sun Microsystems - Niagara2 / Victoria Falls machines
- AMD - access to Quad-core Opteron (barcelona) access
- Forschungszentrum Jülich - access to QS20 Cell blades
- IBM - virtual loaner program to QS20 Cell blades
Questions?

Best Paper, Application Track