A 300-mW Single-Chip NTSC/ PAL Television for Mobile Applications

S. Sheng, A. Abo, P. Chi,
R. Contreras, R. Gupta, H. Huang, L. Lynn,
E. Macdonald, K.Y. Nam, R. S. Narayanaswami,
S. Stoiber, E. Su, D. Yee
Why analog television?

- Isn’t the world going digital?
- Yes, and no! The television world in 2014:

 - 5.5 billion people today have no access to digital TV
 - Analog infrastructure built out worldwide over past 50 years!
Mobility Considerations for Terrestrial TV

- **Small antennas**
 - Maximum size 3-4 inches
 - Broadcast frequencies as low as 47 MHz ($\lambda \sim 6$ meters)

- **Power consumption and size**
 - Conventional solutions on the order of watts
 - Conventional solutions consist of 200+ discretes
 - Input signal bandwidth from 47 to 862 MHz

- **Poor performance (even when stationary!)**
 - Ghosting
 - Loss of synchronization
 - Analog signal sensitivity to noise
Analog TV Signaling (1)

- Baseband CVBS (composite) signal spectrum
Analog TV Signaling (2)

- Baseband-equivalent RF signal spectrum
 - CVBS signal is VSB modulated to RF carrier
 - Audio subcarrier not shown below
Conventional TV Architecture

- Three major components
- Single-conversion or double-conversion tuner translates incoming channel to an intermediate frequency (IF)
- IF demodulator translates VSB IF signal to CVBS baseband
- Video decoder converts baseband analog video into digital component (4:2:2 YCbCr) video
Direct Conversion TV-on-a-Chip

- Single-chip solution combines functions of RF tuner, IF demodulator and video decoder
- True zero-IF solution – center of band placed at DC
- Digital signal processing used to mitigate mobility issues
 - Demonstrated live reception at speeds greater than 430 kph
 - Can filter most short-term fading / multipath effects
Low-Noise Amplifier

- 40-dB gain range
 - 20-dB coarse step
 - 2-dB fine steps
- $A_v = 30$ dB
- Integrated programmable filter embedded within LNA
 - Helps mitigate signal power into mixer input
 - Assists in mixer harmonic rejection
Mixer

- Gilbert-type mixer (Av = 10 dB)
- Generally represents distortion limit of entire tuner
- Output load represents first pole of baseband filter
- M3 – M6: thin-oxide (0.13u) devices – needed for distortion performance

Due to 800 MHz input bandwidth, mixer harmonic rejection and LO generation are two critical design issues!
LO Harmonics in Mixers

- Rectifying action of the LO port results in multiplying the RF input signal with a *square wave*

\[s_{LO}(t) = \text{sgn} \left[\cos \omega_c t \right] = \cos \omega_c t - \frac{1}{3} \cos 3\omega_c t + \frac{1}{5} \cos 5\omega_c t \]

- Requires filtering before downconversion or harmonic rejection mixing

- Narrowband systems not affected by this!
Harmonic Rejection Filtering (1)

- For I/Q mixing, the LO signal is effectively

\[
s_{LO}(t) = \text{sgn}[\cos \omega_c t] + j \text{sgn}[\sin \omega_c t] \\
= \cos \omega_c t - \frac{1}{3} \cos 3\omega_c t + \frac{1}{5} \cos 5\omega_c t + j(\sin \omega_c t + \frac{1}{3} \sin 3\omega_c t + \frac{1}{5} \sin 5\omega_c t) \\
= e^{j\omega_c t} - \frac{1}{3} e^{-j3\omega_c t} + \frac{1}{5} e^{j5\omega_c t}
\]

- Must attenuate harmonics at \(-3\omega_{LO}, +5\omega_{LO}, -7\omega_{LO}, +9\omega_{LO}, \) etc.
Harmonic Rejection Filtering (2)

- A complex band-pass filter centered at $+\omega_{LO}$ must attenuate harmonics located at frequency offsets $\pm 4\omega_{LO}$ from $+\omega_{LO}$
 - less stringent attenuation requirements, but requires 4 mixers for downconversion instead of 2

- A real low-pass filter must attenuate harmonics located at frequency offsets $\pm 2\omega_{LO}$ from $+\omega_{LO}$

- Both must be tunable

Harmonic Rejection Mixing

- The 3rd and 5th LO harmonics may be eliminated by using the following LO waveform (generated by summing the first three waveforms)

- Some filtering is still required to eliminate higher order harmonics as well as residual 3rd and 5th harmonics due to mismatch

\[\text{LO waveform generated by summing the first three waveforms} \]

\[\begin{align*}
+1 \\
-1 \\
+\sqrt{2} \\
-\sqrt{2} \\
+1 \\
-1 \\
+(2+\sqrt{2}) \\
+\sqrt{2} \\
-\sqrt{2} \\
-(2+\sqrt{2})
\end{align*} \]

LO Generation

- LO must cover broad frequency range from 48 to 862 MHz
- I/Q LO signals required

<table>
<thead>
<tr>
<th></th>
<th>1724</th>
<th>3448</th>
</tr>
</thead>
<tbody>
<tr>
<td>÷4</td>
<td>431</td>
<td>862</td>
</tr>
<tr>
<td>÷8</td>
<td>215.5</td>
<td>431</td>
</tr>
<tr>
<td>÷16</td>
<td>107.75</td>
<td>215.5</td>
</tr>
<tr>
<td>÷32</td>
<td>53.875</td>
<td>107.75</td>
</tr>
<tr>
<td>÷64</td>
<td>26.9375</td>
<td>53.875</td>
</tr>
</tbody>
</table>

- Minimum divide-by-4 guarantees good I/Q balance
- 67% tuning range
 - requires 2 – 4 separate VCOs to cover entire range
VSB Nyquist Filtering (1)

- NTSC and PAL use vestigial sideband modulation
- Without VSB Nyquist filtering, luma signal is corrupted from spectral overlap
- Ideal VSB filter should have the frequency response below

![Diagram of frequency response](image)

- Traditional approaches rely on the IF SAW filter for VSB Nyquist filtering
 - Physically large
 - Driving SAW input capacitance difficult for low power
Without VSB Nyquist filter, the demodulated signal is incorrect due to spectral overlap at frequencies, $-1.25 \text{ MHz} < f < +1.25 \text{ MHz}$

- VSB Nyquist filter is well-suited to digital implementation
Performance Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Figure</td>
<td>4 dB</td>
<td>700 MHz, max gain</td>
</tr>
<tr>
<td>IIP3</td>
<td>-13 dBm</td>
<td></td>
</tr>
<tr>
<td>IIP2</td>
<td>60 dBm</td>
<td></td>
</tr>
<tr>
<td>Video Sensitivity</td>
<td>-90 dBm</td>
<td>loss of color</td>
</tr>
<tr>
<td>Phase Noise</td>
<td>-90 dBc/Hz @ 10 kHz</td>
<td>700 MHz</td>
</tr>
<tr>
<td></td>
<td>-105 dBc/Hz @ 100 kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-135 dBc/Hz @ 1 MHz</td>
<td></td>
</tr>
<tr>
<td>Harmonic Rejection</td>
<td>> 45 dB</td>
<td></td>
</tr>
<tr>
<td>Image Rejection</td>
<td>> 60 dB</td>
<td>post correction</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>total: 300 mW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8V: 250 mW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2V: 50 mW</td>
<td></td>
</tr>
</tbody>
</table>
Chip Micrograph

- 0.13-um 1P8M CMOS
- 5.1 x 3.6 mm²
- 8 x 8 mm² 68-pin QFN package
Conclusion

- A low-power single-chip NTSC/PAL television has been demonstrated
 - Optimized for mobile applications
 - 300 mW power consumption
 - Full band reception (47 to 862 MHz)

- True direct conversion architecture

- For NTSC/PAL reception, harmonic mixing and rejection within the mixer are critical

- Low NF front-end coupled with digital signal processing within decoder achieves unprecedented sensitivity performance
An aside - so what about digital TV?

- Pick four letters and you have a standard....
 - ATSC / ATSC-M/H
 - OpenCable / DOCSIS / DVB-C
 - DVB-S / DVB-S2
 - ISDB-T / ISDB-B / ISDB-S / ISDB-C
 - DVB-T / DVB-T2 / DVB-H
 - DMB-T
 - CMMB / TMMB / DTMB
 - T-DMB / DAB-IP

- Incredibly fragmented by geography
- Most deployments are exceedingly slow!

From Telegent: Stay tuned!