Anton: A Specialized ASIC for Molecular Dynamics

Martin M. Deneroff,
David E. Shaw, Ron O. Dror, Jeffrey S. Kuskin,
Richard H. Larson, John K. Salmon, and Cliff Young
D. E. Shaw Research
Marty.Deneroff@DEShawResearch.com

© 2008 D E Shaw Research, LLC
Themes in this Talk

• Why build a molecular dynamics simulation engine?

• Anton’s overall, systematic design
 – Amdahl’s Law in Specialized Computers
 – Putting it All Together

• “Green” Computing?
Molecular Dynamics Simulation

Molecular Dynamics (MD) is a way to simulate and observe the structure and dynamics of molecular systems based on physical principles

- Life Sciences research
- Drug discovery / validation of efficacy, specificity, toxicity → “Rational Drug Design”
- Materials Science
The Molecular Dynamics Computation

1. Divide time into uniform timesteps (~ 1 fs)

2. Compute forces on all particles in system in a timestep
 \[E = \sum \text{Bonded:} \quad (Flexible Subsystem) \]
 \[\sum k_b(r-r_0)^2 \quad \text{Stretch} \]
 \[+ \sum \text{Non-Bonded:} \quad (High Throughput Interaction Subsystem) \]
 \[+ \sum \text{Bend} \quad \sum A[1+\cos(n\pi-\varphi)] \quad \text{Torsion} \]
 \[+ \sum q_i q_j / r_{ij} \quad \text{Electrostatics} \]
 \[+ \sum q_i q_j / r_{ij} \quad \text{Van der Waals} \]

3. Based on these forces, compute new velocities and positions for all particles
 \[V = V_0 + F \Delta T / M \quad (Flexible Subsystem) \]
 \[S = S_0 + V_0 \Delta T + F (\Delta T)^2 / M \]

4. Rinse and repeat... About 1 TRILLION times to simulate a millisecond!

Also, do a bunch of ugly housekeeping functions along the way to maintain (as needed for experiment) constant temperature and / or pressure, etc.
Why Accelerate MD?

Most important biological processes require ~1 ms of real time to complete.

- Simulation of this length requires time on the order of years with the most powerful existing computers.

- Maximum useful time for performing simulations is on the order of months or less.

Need to go faster or impractical!
Specialized Supercomputing

Anton is a specialized computer designed to perform molecular dynamics simulations

- Performance >100x general purpose computers

- Implemented as an array of identical ASICs connected as a 3D Torus
Anton Architecture

• Match Machine structure to logical partitioning of Problem:
 – 3D Spatial Decomposition with Periodic Boundary Conditions
 - > 3D Torus Interconnect

• Co-Design algorithms and hardware to optimize performance within technology constraints:
 – Neutral Territory (NT) method for particle movement tightly integrated with communications mechanisms
 – Gaussian Split Ewald method developed for ease of implementation relative to original Ewald method

• Pairwise interactions, the bulk of conventional MD, can be sped up almost arbitrarily using Direct Product Select-Reduce (DPSR) methods -- then, communications and other parts of MD computations dominate. Anton seeks to balance all parts and (to extent possible) execute all in parallel.
One Anton Segment (512 ASICs)
Anton ASIC Block Diagram
Anton ASIC

• 90 NM CMOS – implemented in Fujitsu CS100HP Process
• 17.3 mm x 17.3 mm
• 2108 ball CBGA with ~1000 signal IO
• 33 Million gates, 11 Mbit SRAM (~ 200 million transistors total)
• 6 High Speed IO Channels – 80 GByte/s aggregate bandwidth
• 256 bit wide DDR2-800 DRAM - ~25 GByte/s bandwidth
• ~75 W power dissipation
Anton ASIC (2)

- **Flexible Subsystem** – 400 MHz
 - 4 Tensilica Cores
 - 8 Geometry Cores – 2 lane VLIW won 4 element SIMD vectors

- **High Throughput Interaction Subsystem** – 800 MHz
 - 32 PPIMs
 - 1 Tensilica core

- **On-chip Ring Network** – 400 MHz
 - 51.2 GByte/s bandwidth
 - All subsystems communicate on Ring as peers

- **Memory Subsystem**
 - 2 DDR2-800 DRAM Controllers
 - Fast atomic Add-to-Memory operations for force accumulation
What makes Anton fast?

• Specialization
 – High-Throughput Interaction Subsystem (HTIS)
 • Highly specialized, largely hardwired
 – Flexible Subsystem
 • Programmable, but still specialized
 – Communication Subsystem
 • Over two orders of magnitude faster than Gigabit Ethernet
 • 50 ns hop latency, 640 Gbit/sec/node
 • Highly optimized end-to-end messaging with no software stack

• Parallelization

• System Integration
Why does Anton need fast general-purpose computation?

The GROMACS MD code on a single Xeon core spends:
- 71% of its time in HTIS-related tasks
- 29% of its time in other tasks
 - Amdahl’s Law: accelerating only the HTIS tasks limits maximum speedup to <4

- Communication becomes significant fraction of this time when converted to parallel computation

For our purposes, fast means two things:
- Low compute latency
- Low communication latency
Why does Anton need general-purpose computation?

• HTIS Functions
 – The HTIS excels at Direct Product Select-Reduce (DPSR) operations.
 • These are the majority of calculations (>70%) in MD simulation
 – Midrange forces (electrostatic + van der Waals between pairs of atoms)
 – Charge spreading
 – Force interpolation

• Flexible Subsystem Functions
 – Bond forces
 – Correction forces
 – FFT and Fourier-space operations
 – MD Integration and Constraints
 – Pressure and Temperature control
 – Migration
Functional view of an MD Time Step

- **Force Phase**
 - Long-range forces
 - Range-limited forces
 - Bond forces
 - Correction forces

- **MD Integration Phase**
 - Constraint calculation
 - Integration
 - Pressure and Temperature control
 - [Migration]
Particle-Point Interactions In the HTIS

- 32 PPIMs, organized as 4 chains of 8 PPIMs each
- Achieves fantastic computational density, throughput
 - Calculates one non-bonded force/clock/PPIM
 - Equivalent calculation ~50 clocks on modern x86
Pairwise Point Interaction Pipeline (PPIP)
Detail of One PPIM
Anton’s Flexible Subsystem
Specialization: Remote Access Unit

• Closely-coupled DMA engine
 – 128 transfer descriptors; one operation to launch, change, or sync
 – Each descriptor corresponds to a hardware memmove operation

• Offloads communication from cores

• Supports “push” style of communication
 – Performs sends, counts acks, and counts received packets
 – Almost no reads or synchronizations
 – Push communications can be seen as “static dataflow”
Specialization: Geometry Core and ISA

The Geometry Core (GC) is a custom design optimized for geometric computations using three and four element vectors.

- Parallel techniques used in the GC:
 - Dual-issue: instruction-level parallelism
 - 4-way SIMD: data-level parallelism
 - MAC operations: pipeline parallelism
 - 8 cores per chip: multicore parallelism

- Mixed 48 vector/192 scalar register file
 Reduce operation count by:
 - Putting result where it will be used next
 - Seldom spill to memory

- Specialized operations:
 - Dot product, determinants, general vector permute,…
 - Biggest benefit: reduces operation count

- A Tensilica core is associated with each pair of GCs and primarily supervises data movement
Geometry Core
(one of 8; 64 pipelined lanes/chip)
What makes Anton fast?

• Specialization

• Parallelization
 – 512 ASICs, each an SoC by itself
 • 2,560 Tensilica Cores (general-purpose control)
 • 4,096 Geometry Cores (general-purpose compute)
 • 16,896 PPIMs (special-purpose compute)

• System Integration

© 2008 D E Shaw Research, LLC
Functional view of an MD Time Step

- Force Phase
 - Long-range forces
 - Range-limited forces
 - Bond forces
 - Correction forces

- MD Integration Phase
 - Constraint calculation
 - Integration
 - Pressure and Temperature control
 - [Migration]
Parallelization Speedups

<table>
<thead>
<tr>
<th>Task</th>
<th>Anton 512-node speedup over GROMACS</th>
<th>Divided by 512 (single-node speedup)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range-limited non-bonded forces</td>
<td>50,000</td>
<td>98.5</td>
</tr>
<tr>
<td>Charge spreading and force interpolation</td>
<td>5,400</td>
<td>10.5</td>
</tr>
<tr>
<td>FFT and Fourier space multiplication</td>
<td>3,700</td>
<td>7.2</td>
</tr>
<tr>
<td>Bond forces</td>
<td>4,600</td>
<td>9.0</td>
</tr>
<tr>
<td>Correction forces</td>
<td>3,700</td>
<td>7.2</td>
</tr>
<tr>
<td>Position and velocity updates</td>
<td>1,200</td>
<td>2.4</td>
</tr>
<tr>
<td>Constraint calculations</td>
<td>1,400</td>
<td>2.7</td>
</tr>
<tr>
<td>Temperature computation</td>
<td>400</td>
<td>0.8</td>
</tr>
<tr>
<td>Total</td>
<td>9,000</td>
<td>17.6</td>
</tr>
</tbody>
</table>

© 2008 D E Shaw Research, LLC
What makes Anton fast?

- Specialization
- Parallelization
- System Integration
Mapping the MD Time Step to Anton

- A long-range time step takes ~20 μsec. (8000 clocks)
- This *time step diagram* gives the task schedule on hardware subsystems
- Schedule minimizes critical path
- We optimize for latency!
 - Not throughput
 - Not utilization
De Rigueur Performance Slide

• Anton performance on a common benchmark system (DHFR (*Dihydrofolate reductase*) 23,558 atoms)
 – Each time step is 2.5 femtoseconds of simulated time
 – Anton performs a pair of time steps in 30 microseconds
 – This yields 14,000 simulated nanoseconds/day
 – Or about 1 millisecond (i.e. 4×10^{11} time steps!!!) of simulated time in 2.5 months

• Our goal: 1000x faster than best MD when we started
 – 2003: NAMD on a fast cluster: 10 milliseconds per time step
 – 2008: Anton: 15 microseconds per time step

• Equivalently, 100x better than 5 years of Moore’s law
Tradeoffs in Anton

- Specialized hardwired logic gives enormous advantage in performance and area – >100x relative to General purpose CPU
 - Don’t know another way to achieve Anton goals for HTIS functionality
 - Can’t deal with certain changes to functional form (but we don’t expect such changes in this calculation)
 - Need to anticipate at design time variability that will be required later

- Flexible Subsystem is still specialized – Perhaps 10x advantage over GP cores
 - Can compute anything needed, but portability, tool support weak
 - Requires expert programmers, poor programmer productivity
 - Usual system services and protections do not exist

© 2008 D E Shaw Research, LLC
Power Consumption in Anton

512 Node Anton Segment contains:

- 512 ASICS @ ~75 W = ~38.4 KW
- 512 DRAM sys. @~30 W = ~15.36 KW
- 128 node brd. misc. @~50 W = ~6.4 KW

- Total logic ~60.2 KW

- After DC Conversion
 - 440VAC -> 48VDC -> 12VDC -> end use 1- 2 V
 - 60.2 KW / (0.9)^3 = 60.2 / 0.729 = ~82.5 KW

Fans, etc. in racks ~ 4.0 KW

Total Segment Power ~ 86.5 KW

Chilling of Cooling Water ~ 30 KW

Grand Total ~116.5 KW
It's Not Easy Being Green:
Anton vs General Purpose Computers

<table>
<thead>
<tr>
<th>System</th>
<th>MD Performance* (ns/day)</th>
<th>Power Consumption (KW)</th>
<th>kWh/ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anton 512 Nodes</td>
<td>14,115</td>
<td>~116.5</td>
<td>0.198</td>
</tr>
<tr>
<td>Desmond C on 512 Cores</td>
<td>~260</td>
<td>~44</td>
<td>44.06</td>
</tr>
<tr>
<td>Blue Gene L / Blue Matter on 512 Cores</td>
<td>23.75</td>
<td>~39</td>
<td>39.41</td>
</tr>
</tbody>
</table>

* Production parameters. Dihydrofolate reductase benchmark; 23,558 atoms
All numbers include power for cooling!
Traditional Conclusions Slide

• *Specialization, Parallelization, and System Integration* each contribute to Anton’s performance.

• Amdahl’s law drove the design.

• Anton will enable millisecond MD simulations!

• Power efficiency of specialized design is very good compared with GP systems
Anton ASIC
Anton PCB