The QFP Packet Processing Chip Set

Will Eatherton (Speaker), Don Steiss (Speaker),
James Markevitch
Cisco Systems,
Cisco Development Organization
Agenda

- Overview of Cisco’s ASR-1000 Quantum Flow Processor
- Architecture and Implementation Tradeoffs
- Software Development and Debug Environments
- Silicon Details and Design Methodology
- Results
- Summary
ASR 1000 Building Blocks

- 3 Chassis types
 - 6 / 4 / 2 RU
- RP (Route Processor)
 - Handles control plane traffic
 - Manages system
- ESP/FP (Forwarding Processor)
 - Handles forwarding plane traffic
- Shared Port Adapter Carrier Card
 - Houses the SPAs
- SPAs
 - Provide interface connectivity
- Centralized Forwarding Architecture
 - All traffic flows through the ESP/FP
ASR 1000 Software Architecture – IOS XE

- IOS XE is:
 - IOSd
 - IOS XE Services/API’s
 - QFP Datapath Software

- IOS runs as its own Linux process for control plane (Routing, SNMP, CLI etc). Linux kernel with multiple processes running in protected memory

- QFP Datapath Software
 - Fully multiprocessor code base covering range of features across Security, Voice, Deep packet inspection
 - Code base is ANSI-C, written to run based on packet loop and with function libraries for OS like services (Memory Mgmt, Timers, ..)
QFP10 Architecture
Architecture and Implementation Tradeoffs

- Programming Environment
 Assembly code vs. HLL: ANSI C with typical C runtime system for portability and productivity. Assembly coded Hardware Abstraction Layer (HAL).

- Instruction Set Architecture and Implementation
 ISA make vs. buy: off-the-shelf ISA to accelerate production software development.
 Implementation make vs. buy: custom microarchitecture and circuits to improve power, performance and area.

- Latency Hiding
 Implicit vs. explicit mechanisms: Both; threading is implicit, non-blocking messages and data prefetch are explicit.
Architecture Tradeoffs – Continued

- Memory Subsystem

 Ordering: intentionally weak. Loads and stores have no
guaranteed MP ordering. Barriers, indivisible operations and
serialization are provided. Atomic ordering facilities are provided
by special resources.

 D$ parameters: enough capacity to cover parts of the working
set with high locality, allocation policies to avoid cache pollution.

 I$ parameters: a large as possible and large second level cache
bandwidth to reduce thread performance interference.

- Processor and Resource Communication

 Address mapping and/or message passing: message passing
hardware infrastructure with an address mapped layer visible in
the programming model.
Architecture Tradeoffs – Continued

- **Accelerators: what goes in hardware?**
 - Message passing coprocessor: performance (latency hiding), code size, encapsulation.
 - Scheduling: performance, encapsulation.
 - Crypto: performance (parallelism), stable algorithms.
Traffic Manager

- 128K queues and the ability to set Max/Min/Excess BW
- Two Priority Queues can be enabled for each QoS policy applied.
- The number and makeup of layers inside the QoS policy are flexible. The possible hierarchies are not tied to any existing hierarchies used in networks today.
- The traffic manager can schedule multiple levels of hierarchy in one pass through the chip.

 Queuing operations can be split across multiple passes through the chipset (for example, ingress shaping or queuing followed by egress queuing).
Software Code Development & Debug Environments

- Simulation, code debug and hardware debug software components integrated in the Eclipse platform.
 - Multiple speed vs. accuracy processor simulation options
 - Compiler, assembler, linker, code debugger
 - Chipset state inspection (registers, interrupt sources)

- Enabled production code development and performance tradeoffs in parallel with hardware development.

- The same environment is available for hardware analysis and debug running on the router’s control plane processors.
QFP Code Debug Environment
QFP Hardware Debug Environment Example
QFP10 Chipset

Multi-Core Packet Processor
- 1.2 GHz/400 MHz
- 40 custom multi-threaded CPUs
- TI 90nm, 8-layers metal
- 19.54 x 19.54 (382 mm²)
- 307 million transistors
- 20 Mb SRAM
- 1019 I/O, including 800 MHz DDR

Traffic Manager and Interface Chip
- 400 MHz
- Buffering, 200K queues, hardware HQF scheduling
- TI 90nm, 8-layers metal
- 19.0 x 17.48 (332 mm²)
- 522 million transistors
- 70 Mb SRAM
- 1318 I/O, including 800 MHz DDR
Packet Processing Engine (PPE) Structure

- Hardware-Managed Buffers
- Instruction Queues
- Execution Pipeline
 - TI R EX M0 M1 WB
- I-Fetch Pipeline
 - F0 F1 PD ID
- L1I$
 - 16kB 8W
- L1D$
 - 4kB 8W (2W/thr)
- L2I$
 - Intf
- Message Copro, 5 channels/thr
- Debug FSMs, CSR interface
Hardware Design Methodology

- Customer Owned Tooling (COT) with GDSII handoff to the foundry partner.
 - Cell library designed and characterized by Cisco
 - SRAM compiler and I/O IP from Texas Instruments.
 - Extensive crosschecking at Cisco and Texas Instruments.

- Synthesis/P&R outside of processor array
 - Multiple commercial synthesis and physical design tools.
 - In-house tools for RTL code generation and documentation.
Hardware Design Methodology - Processor

- Cell-based to leverage ASIC tools.
- Static CMOS with selective use of domino circuits
- Schematic design entry with physical specifications in instance names for fast, deterministic placement.
- Polygon-level artwork in critical modules.
- Autorouted signals with many pre-routes above the cell level
- Multiple functional reference models and equivalence checking
Processor Design Verification

- Strong block level verification methodology
- Heavy use of code generators and constraint solving
- Processor verification statistics:
 - 1,903,282 RTL simulation runs
 - 95,185,665,935 total clock cycles
 - 17,421 total test failures
Processor Design Verification – Continued
Failures by Test Source

- Tests using constraint solver: 23%
- Message passing tests: 18%
- Hand generated tests: 22%
- Random instruction tests: 8%
- MP ordering tests: 18%
- Irritators on other tests: 7%
- Uncategorized: 4%
Results – Shmoo at Room Temp
Results - Functional

- On rev 1.0 silicon:
 - Silicon delivered for system integration, January 2007
 - First packets through production software, February 2007
 - Customer testing, August 2007

- Product Launch March 4, 2008

- All “mission mode” registers and instructions in the ISA are used in production software.
Summary

- Router Architecture today involves partitioning of software across multiple CPU complexes, Multiple Cores per CPU, Multiple threads per Core
- Processor architecture in networking is still evolving
- Many architectural and implementation tradeoffs are a result of software engineering complexity that rivals hardware complexity and often 10x more staffing.