Hot Chips 21 (August 2009)

Innovation Envelope: Hot Chips in Blades

Kevin Leigh, Ph.D.
Distinguished Technologist
BladeSystem Architect Lead
Contributors

Collaborators

- Norm Jouppi (Ph.D., Director/Fellow, ExaScale Computing Labs)
- Partha Ranganathan (Ph.D., Distinguished Technologist, ExaScale Labs)
- Dwight Barron (Fellow, ISS CTO office)
- Dave Koenen (Network Architect, ISS)
- Chuck Hudson (Network Architect, ESS Blade)
- Paul Congdon (CTO/Fellow, ProCurve Network)

Reviewers

- Christos Kozyrakis (Ph.D., Assistant Professor, EE & CS, Stanford Univ.)
- Rob Elliott (Storage Architect, ISS Platform and Technology)
- Siamak Tavallaei (Distinguished Technologist, ISS)
- Mike Krause (Fellow, ISS CTO office)
- Gene Freeman team (ISS Platform and Technology)
Purpose of this talk

- To illustrate how synergy between system and chip innovations can lead to system and chip product differentiation features important to users

- Will use three chip innovation case studies in blade Ethernet networking

- Describe future chip innovation opportunities in blade architecture
Synergistic innovation environment

- Innovation envelope
 - foster system and chip innovations for multiple product generations
 - enable useful innovations to solve real-world problems
 - enable differentiations while complying necessary standards

Meet application requirements
Adapt business changes
Adapt technology trends

Product differentiations
Solve business problems
Blade environment

- Typically consists of
 - Server/storage/IO blades
 - 1st level or edge network switches
 - Backplanes
 - Power/cooling modules
 - Management module
 - Enclosure to house the above

- Blade designs vary in the way tradeoffs are made at design time for
 - Cost, scalability, flexibility, adaptability, …ity

- BladeSystem c-Class
 - Scalable architecture [1][2]

Integrated nature within blade environment opens up more opportunities for innovations
Technology trends: Converging fabrics

Converged fabric evolution enabled by high BW and protocol encapsulation

- 10GbE BW makes sense to consolidate GbE & encapsulate other protocols
- Low-latency 10GbE fabrics further enable RDMA (RoCEE [9])
Case studies: Three innovations in series

1. For non-disruptive network connectivity
 - Problems: Switch count explosion
 Server & network admin domains overlap
 - Solution: Virtual Connect
 - HP shipping products

2. For more efficient use of network bandwidths
 - Problem: Under-provisioned or under-utilized ports
 - Solution: Flex-10
 - HP shipping products

3. For consistent datacenter-class networks
 - Problem: “Internal” network traffic hidden from network administrators
 Inefficient to support rich networking functions
 - Solution: VEPA
 - Work in progress
Pre-Boot Configuration Environment (PCE)

- A basic mechanism to enable Virtual Connect, Flex-10 & VEPA
 - An automated reprogramming mechanism of HW attributes [3]
 - Leveraged /amended industry standard methods (PCI Firmware 3.0 spec ECN [4], DMTF SM CLP [11])
Innovation #1: Virtual Connect

- Problem for embedding switches in blade enclosures
 - network switch count explosion
 - server/network administration domain overlap
- Solution: Virtual Connect (VC) [5]
 - Make switches transparent to the network admins
 - Only NIC firmware (no NIC or switch chip hardware) changes
 - Changed enclosure and VC Ethernet module management firmware
- Features & benefits
 - PCE is transparent to device drivers, OS and applications
 - VC is transparent to core switches
 - Enables server administrators to manage VC modules
 - Migrating applications
How Virtual Connect works?

- Propagates blades’ network physical addr to “external” ports
 - Reprogram network HW attributes via PCE (e.g., MAC addresses)
 - HW address flow through VC module (used to be “switch”)

From outside of an enclosure, VC-Enet uplinks look a lot like regular server connections

Virtual Connect Module for Ethernet

- Does not participate in data center STP
- Provides automatic loop prevention
- Allows aggregation of links to data center networks (LACP and fail-over)
- Supports VLAN tagging on egress or pass-through of VLAN tags
- Supports Link Layer Discovery Protocol (LLDP)
Innovation #2: Flex-10

- **Problems**
 - Inefficient use of bandwidth, volume space, power, etc.
 - Too many under-provisioned 1GbE NICs and switch ports
 - Under-utilized 10GbE NIC and switch ports

- **Solution**
 - Partition a 10GbE port into multiple logical ports with programmable bandwidth [6]
 - Relatively easy NIC chip hardware changes (Same package with ~20% more gates)

- **Features & benefits**
 - Essentially replaces multiple 1GbE NICs for VM apps
 - Transparent to the edge switches
How Flex-10 works (with Typical OS)

Separate NIC driver instances and easily add/remove

Pre-Boot Configuration of PCIe Functions by BIOS

FlexNIC parameters:
- Disable/enable
- Outer VLAN Tag ID
- Min/max B/W & QoS priority
- Function type (LAN, iSCSI)

Each Func has Q-set & Intrpt

Outer VLAN steering to Qs & insertion/removal of tags

QoS Priority Flow Control

In-band mgmt to NC-SI or uC

Chip modifications

NC-SI: Network Controller Side-Interface

Baseboard Mgmt Controller (BMC)
How Flex-10 works (with VMM)

Direct DMA from NIC Rx Qs

VM physical NIC (pNIC):
• NetQueue & VMQ Support
• Shared Control & Setup
• Provides Addr Translation
• Software Switch for bcasts

Independent NIC Functions

Egress B/W Control per PF

MAC Addr Steering to Rx Qs

Offload Engine per PF

In-Band Mgmt for NC-SI or uC

VLAN Steering to PF & Insertion/Removal

Chip modifications
Innovation #3: VEPA

• Problem
 − VMs communicate among them via vNICs and vSwitches within hypervisor
 − VM network traffic are not visible and managed by external switches
 − Users want more control on VM and PM network traffic
 − Too many advanced network functions in each server causing performance and management problems

• Solution
 − VEPA (Virtual Ethernet Port Aggregation) [7]
 − Enables hairpin forwarding on a per-port basis when a port aggregator is attached to a bridge port

• Features & benefits
 − Complimentary to PCI-SIG SR-IOV (Single-root I/O Virtualization) [10]
 − Transparent to Ethernet frame format and existing bridges
 − VM & PM network traffic are visible and managed at the network edge
 − VMs benefit rich edge switch features (ACLs, private VLANs, security)
How Tag-Less VEPA works?

- VEPA Ports (vPorts) as vNICs to VM
 - PCIe Virtual Functions
 - Typ. NIC features (TCP checksum, RSS, LSO)
- Bridge ports configured for VEPA attach for hairpin forwarding mode
- VEPA manager aggregates configs of vPorts
 - MAC addr, multi-cast addr, VLAN tags
- Invokes by special Bridge mode negotiation
- Sends all outbound traffic to the physical port
- Forward/multicast/broadcast traffic using the Address Table
- No local bridging like Virtual Eth Bridge
Summary

- Blade environment is a catalyst for innovations
 - Designed blade infrastructure to phase-in generations of useful innovations
 - Turned commodity systems and components into better solutions
- Illustrated a series of system and chip innovations with 3 case studies
 - **Virtual Connect** ➔ Decouples server and network admin domains
 - Enable blade deployment with minimum disruption [5]
 - **VC Flex-10** ➔ Efficient bandwidth partitioning
 - Lower CapEx: Reduce network HW ≤75% & HW costs ≤66%[8]
 - Lower OpEx: Reduce power usage & costs ≤56% [8]
 - **VEPA** ➔ Expose VM network traffic to edge network
 - Efficient traffic management and processing in edge network
 - Work in progress
 - VEPA proposal to IEEE [7]
 - Multichannel & Remote Services proposal to IEEE [12]
 - Published patches for Linux and Xen [13][14][15][16]
Closing remarks

• Standards are important, but are not sufficient to differentiate products
• Common design for the mass promotes volume but prevent differentiation
• Important to Synergistically innovate chips within system and solution contexts, striking the right tradeoff balances
• In addition, innovation envelope should encompass OS and VMM
• Chip innovation opportunities in
 – Addressing proc/memory packaging, perf., power/cooling challenges
 – Addressing inefficient overheads for NICs, especially for small message sizes
 – Exploiting new memory hierarchy levels (e.g., using flash devices)
 – Dealing with signaling rates >10Gbps across PCB and other media channels
 – Exploiting higher bandwidths (e.g., 40GbE, 100GbE)
 – Enabling new fabric applications, e.g., PCIe for more than local I/O
 – Enabling new storage systems and sub-systems
References

http://www.pcisig.com/specifications/conventional/pci_firmware

[14] [Xen-devel] [PATCH][RFC] net/bridge: Add basic VEPA support to Xen Dom0c, 2009.

[16] [Xen-devel] [PATCH][RFC] tools: Add basic VEPA support, 2009.