Intel® 5520 Chipset: An I/O Hub Chipset for Server, Workstation, and High End Desktop

Debendra Das Sharma
Principal Engineer, Digital Enterprise Group
Intel Corporation
Contributors

• Nilesh Bhagat
• Rob Blankenship
• Celeste Brown
• Sam Chiang
• Ken Creta
• Debendra Das Sharma
• Hanh Hoang
• Siva Gadey Prasad
• S. Jayakrishna
• Michelle Jen
• Daniel Joe
• Chandra P Joshi
• Lily Looi
• Dean Mulla
• Sridhar Muthrasanallur
• K. Pattabhiraman
• Guru Rajamani
• Bill Rash
• Aquiles Saenz
• Rajesh Sankaran
• Miles Schwartz
• Mark R Swanson
• Patrick Tsui
• Cyprian Woo
• Robin Zhang
• and many others..
Agenda

- Platform Overview
- Feature Set
- Micro-architecture and Transaction Flows
- Performance
- Chip Statistics
- Summary
Server Chipset Evolution

Trends:
- Increased integration => fewer chips
- Increased bandwidth for coherent traffic: FSB -> multiple FSBs -> Links
- Increased memory capacity and bandwidth (memory buses -> FBD -> Integrated memory controller)
- Increased I/O connectivity and bandwidth: PCI bus /bridges to PCIe* links

FSB: Front Side Bus. *: Published in Hotchips
Platform Overview

- Platform Transition:
 - Front Side Bus to Intel® Quick Path Interconnect Link
 - Memory controller integrated to CPU

- Intel® 5520 Chipset is an I/O Hub
 - Bridge between QPI and I/O
 - First server chipset with PCIe*2.0
 - Flexible I/O with 36 PCIe* 2.0 Lanes (3 to 10 Root ports of different widths)
 - One or two CPU socket connection
 - Server and Workstation platforms
 - Customized to High-End Desktop (X58)
 - Multi-generational CPU upgrades

* Other names and brands may be claimed as the property of others. Copyright © 2009, Intel Corporation. Hotchips 2009
Dual IOH Platform

- Increased I/O Connectivity
 - 72 PCIe* 2.0 Lanes
 - Maintains I/O flexibility
 - Workstation and server
- Two IOHs coordinate their accesses to appear as a single IOH to the CPU(s)
 - Enhanced QPI protocol in the IOH-IOH Link (e.g. Recall cache lines from other IOH to ensure forward progress)
 - Dynamic adjustment of CPU HOME resources (trackers) to ensure performance
- One or two CPU sockets

* Other names and brands may be claimed as the property of others. Copyright © 2009, Intel Corporation. Hotchips 2009
Intel® Quick Path Interconnect (QPI)

- Two QPI links, each connecting to a CPU socket (or IOH)
- Differential links with forwarded clock
- Supports up to 17” channel length with two connectors
- Each QPI is 20 bits wide, up to 6.4 GT/s Data Rate
- 51.2 GB/s raw bandwidth and 31.5 GB/s of sustained real data transfer with two QPI Links at 6.4 GT/s
- CRC protection on every 80 bits along with Link level retry
- Unordered fabric for performance
- Snoopless IOH ensures CPU does not snoop IOH
 - QPI connecting IOH only used for I/O accesses
 - IOH does not remain in snoop path of CPU through upgrades

* Other names and brands may be claimed as the property of others. Copyright © 2009, Intel Corporation. Hotchips 2009
Intel® 5520 I/O Virtualization Features

- First server chipset shipping with PCIe* I/O Virtualization
 - Multiple VMM vendor (Xen, KVM, Citrix, Parallels, VMWare, etc) products enabled

- All inbound memory requests undergo VT-d (IOMMU) address translation and access privilege check

- Translation based on the requestor’s BDF <Bus, Device, Function> and page address
 - Each BDF may belong to a different virtual machine (VM)

- Context Entry (2-level) and a 4-level address translation structure resident in memory

- Multi-level caching structures inside IOH
 - Context entry cache, L1/L2, L3 and IOTLB caches
 - Invalidation: Register-based and Queue-based from memory

- Supports PCI-SIG defined ATS/ACS for end-point caching and access rights check

[Assigned I/O for VMs:
VM1: (P1,0), (P2,2)
VM2: (P1, 1), (P2, 0), P3
VM3: (P1, 2), (P2, 1)]
Reliability, Availability, Serviceability (RAS)

- High speed interfaces (ESI, PCIe*, QPI) are CRC protected with Link level retry
- Poison support throughout (PCIe*, ESI, QPI, internal paths)
- Internal data path mostly ECC/CRC protected
 - Configuration registers are parity protected
- Detailed error logs in each interface for each error type
- Advanced Error Reporting Structures
 - Both MSI-based as well as interrupt pin based notification
- Hot-plug support on all PCIe* Links
- Lane degradation and reversal support on PCIe*
- Live Error Recovery for guaranteed error containment
 - Can program each error type in to take the PCIe* link down
 - Example: If a device can not handle poison data, we can take that Link down rather than propagate poison to the device
Intel® 5520 Chipset Features

- **Isochronous** support on ESI for Quality of Service
 - Separate Virtual Channel for HD Audio (latency & bandwidth)
 - Separate Virtual Channel for USB (bandwidth guarantee)

- **IOAPI C**: I/O Advanced Programmable Interrupt Controller
 - Converts legacy interrupts to Message Signaled Interrupt
 - Avoids interrupt sharing => better for performance

- **QuickData Acceleration** for CPU off-load
 - DMA Move Engine w/ CRC capability: 5GB/s of bandwidth
 - Eight functions for better virtualization support
 - Direct Cache Access to CPU cores from PCIe*

- **Integrated Manageability Engine** for System management
 - Embedded microcontroller with encryption engine
 - Sideband paths to components
 - Inband PCI ports (serial port, DMA, emulated IDE, HECI)
 - Separate power well

* Other names and brands may be claimed as the property of others. Copyright © 2009, Intel Corporation. Hotchips 2009
Transaction Flow Example: DMA Read

1. Memory Read (MRd) loaded to Queue
2. VTd translation and access right check
3. Ordering check. Packet broken to Cache line(s). Request sent to QPI0 (home in CPU0)
4. QPI 0: Conflict check; Check trackers; Consume tracker; Send request to CPU0
5. QPI 1 sends snoop request to CPU 1
6. CPU 1 sends snoop response to CPU0
7. CPU 0 sends Data Return to IOH. QPI 0 releases the tracker on receipt of Data Return
8. Data loaded to outbound PCIe* queue
9. Data completion sent out on PCIe*
DMA Write: Request for Ownership

1. Memory Write (MWr) loaded to queue
2. VTd translation and access right check. Page Walk on a miss.
3. Packet broken to Cache line(s). Request for Ownership (RFO) sent to QPI0 (home in CPU0). No Ordering check to pipeline RFOs
4. QPI 0: Conflict check; Check trackers; Consume tracker; Send request to CPU0
5. QPI 1 sends snoop request to CPU 1
6. CPU 1 sends snoop response to CPU0
7. CPU 0 returns the (Exclusive) Ownership of the Cache Line (without Data) to IOH
DMA Write: Writeback Phase

- **8. QPI 0**: ownership notification to CDP so that it can process DMA Write
- **9. CDP** waits till the posted transaction gets to the top of the posted queue, per PCIe* Ordering rules
- **10. CDP**: Check with QPI to ownership still there; perform write if there; else request line again
- **11. QPI 0** performs Writeback of Data and relinquishes ownership
- **12. CPU 0** sends completion for the Writeback Transaction. Tracker released for subsequent reuse

* Other names and brands may be claimed as the property of others. Copyright © 2009, Intel Corporation. Hotchips 2009
Performance

<table>
<thead>
<tr>
<th>Configuration (Single IOH)</th>
<th>100% Rd (GB/s)</th>
<th>100% Wr (GB/s)</th>
<th>50-50 Rd/Wr (GB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMA w/ 3 PCIe 2.0* cards (2 x16, 1 x4)</td>
<td>15.9</td>
<td>12.4</td>
<td>15.2</td>
</tr>
<tr>
<td>NUMA w/ 4 x8 PCIe 2.0* Cards</td>
<td>13.9</td>
<td>12.3</td>
<td>14.7</td>
</tr>
<tr>
<td>Interleaved w/ 4 x8 PCIe 2.0* Cards</td>
<td>14.1</td>
<td>12.1</td>
<td>14.5</td>
</tr>
</tbody>
</table>

- Measured results on single IOH at launch. More than 2X previous generations due to QPI as well as PCIe 2.0*
- 100% Rd B/W PCIe* limited
- 100% Wr and 50-50 RW B/W is tracker entry limited
 - Writes occupy tracker entry longer since there are two round-trips on QPI Link
 - Bandwidth expected to scale with compute capability in subsequent CPU generations due to more tracker entries from CPU
- Other details: IO Meter benchmark, 2.93 GHz 5500, QPI at 6.4 GT/s, 1333MHz RDIMM DDR3(6 x2 GB, 2 x8 channel), Request Size: 4KB, Max payload: 256B

* Other names and brands may be claimed as the property of others. Copyright © 2009, Intel Corporation. Hotchips 2009
Power

• PCIe* and ESI:
 – Active State Power Management puts idle link to low power L1 state
 – PCI* Power Management mechanisms to allow system software to manage System Sleep states (entry as well as exit)
• QPI: Support for low power L1 state on idle link
• Several power savings measures in the design (e.g., fine-grain and coarse-grain clock gating)
• System wide sleep state orchestrated with South Bridge
• Power numbers:
 – TDP: 27.1 W
 – All Links working on full speed (e.g., QPI at 6.4 GT/s and PCIe* at 5 GT/s)
 – All features and internal devices enabled
 – No active state power management benefit assumed
 – Accounts for worst possible combination of process, voltage, temperature
 – Idle power: 10 W (through system low power state)
Chip Statistics

- 65 nm process technology
- Die Size: 13.6 mm X 10.4 mm
- ~100 M transistors
 - 33x original Pentium
- Package: FCBGA 37.5 x 37.5 mm, 1.067 pin pitch, 10 layer
- Signal Pins: 570; total pins on package: 1295
Summary

• Intel® 5520 is first QPI-based chipset with PCIe® 2.0

• Leadership features
 – I/O bandwidth with flexible I/O Connectivity (36 or 72 PCIe 2.0* Lanes) for various segments
 – I/O Virtualization
 – QuickData for I/O Acceleration
 – Manageability
 – Isochrony for Quality of Service

• Designed to last multiple CPU generations on the same platform to protect customer investments

* Other names and brands may be claimed as the property of others. Copyright © 2009, Intel Corporation. Hotchips 2009