OMAP4430 Architecture and Development

Hot Chips Symposium August 2009

David Witt
OMAP 4430

- Requirements and challenges of building a “class of 2009” application processor
- What did we want to build?
- How did we build it?
- How does it fit in a system?
- Summary/Questions..
Application processor – class of 2009

• Process Technology
 – 45nm – LP 7LM with a very thick top layer –
 – See next couple of foils of challenges with application processors..

• Package technology
 – 12mm x 12mm 0.4mm pitch BGA flip-chip with POP flash/DRAM –

• Memory technology
 – LPDDR2 400MHz

• Power/performance/Area/Schedule
 – 600mW to 100uW max to min..
 – 1Ghz 2p A9 processors with 1MBL2 + lots of other multi-media accelerators and high speed peripherals..
 – As small as possible and/or it had better fit in the package
 – It is 2009 – so it is “imminent”
BOILER PLATE – Advanced Process and Leakage

Phone Performance Requirement

Processing: \(Pwr_{\text{Active}} = CV^2F + \text{Leakage} \)
- \(C \): Decrease/node, offset by complexity
- \(F \): Increases/node
- Leakage: Increases/node, temp.

Idle: \(Pwr_{\text{Idle}} = \text{Leakage} \)
- Leakage: Increases/node, temp

Memory Iddq vs. Power Management

Technology: memory Iddq
BOILER PLATE – We are not just digital guys anymore

- Multiple SRAMs
- DSP
- Digital IP accelerators and interconnect
- JTAG/P1500/Bist => DfT
- Multiple DPLLs
- Touch Screen
- Auto Frequency + Pwr Ctrl DACs
- ADC
- SmartReflex eLDOs
- 3V I/O
- 3V I/O
- MIPI PHY
- USB 2.0 OTG
- Video DAC+ Buffer
- Many eLDOs
- Display
- USB2.0
- TV
- Battery
- DC-DC Reg. (eSMPS)
- Battery i/f
- PM 20V Battery Charger Fuel Gauge White LED Dr.
- Audio CODEC Class D
- Auto Frequency + Pwr Ctrl DACs
- Display
- Battery i/f
- Memory i/f
- User i/f
- SD-Mem + SIM Cards
- keypad
- 3V I/O
- Touch Screen
- ARM
- Temp Sensor
- Digital IP accelerators and interconnect
- SmartReflex eLDOs
- SmartReflex eLDOs
- SmartReflex eLDOs
- Many eLDOs
- SD-Mem + SIM Cards
- keypad
- Memory i/f
- User i/f
- Battery i/f
- PM 20V Battery Charger Fuel Gauge White LED Dr.
- Digital IP accelerators and interconnect
- SmartReflex eLDOs
- SmartReflex eLDOs
- SmartReflex eLDOs
- Many eLDOs
- SD-Mem + SIM Cards
- keypad
- Memory i/f
- User i/f
- Battery i/f
- PM 20V Battery Charger Fuel Gauge White LED Dr.
What did we want to build and why?

- Processors and memory
 - Highest possible performance with SMP ARM Processors
 - Distributed processing and control – Gstreamer/OPENMAX
 - High speed memory optimized for bandwidth and Latency

- Multi-media
 - Best in class Image/video/display
 - 2D/3D graphics with vertex shading
 - Flexible/low power audio – 100 hour playback++

- Interconnect and Peripherals and Protection
 - High performance/flexible interconnect
 - Multiple standard parallel/serial interfaces
 - Flexible method to allow sharing memory and peripherals with different external modems and accelerators
 - Trust zone, Secure RAM/ROM, firewalls, crypto accelerators with secure DMA

- S/W and H/W mechanisms that enable only blocks that need to be powered to be powered for key use cases..
 - Ie be best in class in everything we run between 600MW and 100uW..
 - At the system level not just the OMAP level..

- All of this to enable a wide variety of applications to be always on always connected and that will fit in your pocket…
Processors

- Highest performance processor + L2 + memory system
 - 2p Cortex A9 core 32KBI/32KBD
 - 1MB L2 cache
 - 1GHz+ max clock

- Real time task offload processors
 - 2p cortex M3 @ 200MHz with unified cache/backing SRAM
 - Fast L2 reload – 3 cycles on miss
 - Offloading image/display/video codecs
 - Fast real time response - not subject to main processor HLOS overhead and task switch latency

- General purpose DSP processor
 - 64x-lite DSP @ 466Mhz with 32KB L1 / 128KB L2
 - Fast L2 reload – 5 cycles on miss
 - General purpose pre and post processing task
 - Low power audio codec
 - Large enough L2 to prevent flash/DRAM access in low power mode
Memory system and backplane

- 2x LPDDR2 for OMAP4430

- 400MHz operating frequency
 - i.e. OMAP4430 SDRAM BW budget ~5x OMAP3430
 - 2 x32 channels map to 200Mhz 128 bits OCP 2.2 interconnect..
 - Image, video and display IPs are 2D aware

- 2x-LPDDR2 mapped as 2 interleaved channels for OMAP4
 - Transparent for both SW and HW modules
 - Direct path from processor cluster to memory controllers

- Powerful DRAM Memory Manager (DMM) for BW optimization
 - 2D-Tiling – Rotation - Interleaving – Virtual memory management for all HW operators
Multimedia – image and display

• Image engine
 – Internal proprietary HW/SW/Accelerators mix
 – Enables 200Mpixels/second raw data rate
 – 1000 plus operations/pixel at that data rate..
 – Multiple different camera inputs
 – Usual suspects
 • Defect Pixel correction/Lens distortion correction
 • Gamma correction/color filter adapter/color space conversion
 • Noise filters / Resizers
 • Optimized path 2D path to/from LPDDR2 frame buffer

• Display engine
 – Multiple parallel video and 3D graphics paths
 – Horizontal/vertical filters
 – Programmable overlaps/alpha blending/color space conversion with
 hardware rotation
 – Optional “snapshot” path to capture and feedback blended images
 – Primary/secondary DSI outputs + HDMI
 – Very low power modes with intelligent display fetch...
Low power audio

• Leverage flexibility of existing ARM/DSP codecs
• Minimize everything that needs to be on for MP3 playback
 – Chip wide Only 1 DPLL active [out of 10..]
 – Chip wide only 1 power domain always on [out of many..]
 – Minimize ARM/DSP on time so they are 95% off
 – Build one programmable mixer/buffer for final stage to I/O
 – Optimize all I/O to/from this one small block
 – Optimize external drive/power amplifier to speakers.
• Results on MP3..
 – Battery level for 1000mamp-hr = 100 hours of playback
HW/SW power/use case example

- Different voltage domains
 - Blue/orange/yellow
- Different clocks/power
 - Blocks called out
- Unique connections
 - Wires optimized
 - Master/slave protocol
- Use case
 - Given at “application level"
 - Can be SW or HW or mixed control..
 - Blocks can “watch for activity” and in absence remove power/clocks and wait..
 - Optimization –
 - Shut anything off not needed
 - Balance wakeup time to off time
 - Application must tell O/S
 - O/S tells middleware and HW/SW

Example say:
1 capture image/compress display
2 Listen to MP3 while doing above
3 minimize power – unless wakeup..
Efficient Chip2Chip communication

- **External modems**
 - Need low latency path to memory
 - Expensive to replicate entire memory
 - Expensive modem+apps chip
 - Modems and apps move at different rates

- **Solution**
 - Use LPDDR2 signaling
 - Dedicated links to/from
 - Direct path to LPDDR2
 - Access with protection to all other blocks
 - Side by side placement
 - As efficient as larger package
Summary

- OMAP 4430
 - State of the art application processor
 - Best in class power/performance
 - All the fundamental IP blocks are major upgrades from the OMAP 3430 [state of the art in 2007..]
 - All the supporting devices - ready and waiting -
 - Power management/Audio chips
 - Clock distribution chips
 - WLAN/GPS/BT/Fm radio + S/W integration
 - Modem integration

- If interested contact your local TI representative..
Thank you
And thanks to WW OMAP 4430 team -