Silicon MEMS Oscillators for High Speed Digital Systems

Aaron Partridge, PhD
Sassan Tabatabaei, PhD
Questions This Talk Will Answer

• What are MEMS oscillators, and why do they matter?

• What is their history, and how are they made?

• How will they impact high speed digital systems?

• When and where can I get some?
Quartz and MEMS Oscillators

Quartz Oscillators:
- Ceramic or metal package
- Quartz plate above driver circuit
- Built with special dedicated processes in dedicated factories

MEMS Oscillators:
- Plastic QFN package
- Silicon MEMS die on CMOS die
- Built with standard processes in standard IC fabs
MEMS Resonator and Packaging History

H.C. Nathanson
1967

C.T.C. Nguyen, R. Howe 1999

Bosch 2003

Analog Devices
ADXL-50
1995

Bosch
Resonant gyro
2006

SiTime
QFN Package
2006
5 MHz Resonator

- Like a 2D bell – held in the center with its outer edges ringing. Motion is a few nanometers.
- Quad with center anchor and motionless corners keeps Q high and stress sensitivity low.
- Four resonant beams are driven and sensed capacitively by eight electrodes.
MEMS Resonator Fabrication

1. Etch SOI wafer
2. Protect under oxide
3. Cover and perforate
4. Remove oxide
5. Deposit thick silicon
6. Finish interconnects
Oscillator System Architecture

CMOS Oscillator

- I/O
- Configuration PROM
- Frequency Control
- Temperature Sensor
- Regs

MEMS Resonator

- Sustaining Amp
- Frac-N PLL

Drive

Clock (Clk)

Ground (GND)

Program (Prog)

Open/Standby (OE/ST)

Vcc

MEMS Oscillator System Architecture
PLLs Are Your Friends

- Engineers are sometimes afraid of PLLs
 - Designing PLLs correctly is difficult and requires specialized tools.
 - Poorly designed PLLs can “peak” or degrade the signal or fail.
 - SiTime’s PLLs are of course well designed and don’t cause problems.

- SiTime’s low jitter clocks and oscillators use LC Frac-N Sigma-Delta PLLs
 - Are among the most advanced PLLs in any product.
 - Provide high frequencies / low jitter / low power.
 - Compensate MEMS fab and temperature variations.
 - Support programmable frequencies, spread and voltage control.
MEMS Oscillator Packaging is Similar to IC Packaging

1. Etch lead frame
2. Mount CMOS
3. Mount MEMS
4. Attach wire bonds
5. Mold and singulate
6. Test and calibrate
Frequency Stability Over Temperature (110 Example Parts)

Temperature (C) vs Frequency ppm error

±50 ppm

-45°C to +85°C
IC-Level Reliability

- MEMS oscillators pass all standard CMOS quals and additional tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Quantity</th>
<th>Fails</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFR</td>
<td>Early Life (125C 168 hrs dynamic)</td>
<td>4771</td>
<td>0</td>
</tr>
<tr>
<td>HTOL</td>
<td>Operating Life (125C 2000 hrs dynamic)</td>
<td>320</td>
<td>0</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic Discharge (HBM, MM, CDM)</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>LU</td>
<td>Latch Up (85C 150mA)</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>DRB HTS</td>
<td>Data Retention Bake (150C 1000 hrs)</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>DRB HTOL</td>
<td>Data Retention Bake (125C 1000 hrs dynamic)</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>HAST</td>
<td>Biased Temp and Humidity (85 hrs 130C 85% RH)</td>
<td>320</td>
<td>0</td>
</tr>
<tr>
<td>TC</td>
<td>Temp Cycle (MSL1 + 1000 cycles, -65C -- 150C)</td>
<td>319</td>
<td>0</td>
</tr>
<tr>
<td>QA</td>
<td>Quartz Style Aging (30 days 85C dynamic)</td>
<td>240</td>
<td>0</td>
</tr>
<tr>
<td>MS</td>
<td>Mechanical Shock (50kg shock multi-axis dynamic)</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>VFV</td>
<td>Variable Frequency Vibration (70g dynamic)</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>VF</td>
<td>Vibration Fatigue (20g 30 hrs dynamic)</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>CA</td>
<td>Constant Acceleration (30kg dynamic)</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>HTS</td>
<td>High Temperature Storage (125C 1000 hrs)</td>
<td>240</td>
<td>0</td>
</tr>
<tr>
<td>PCT</td>
<td>Pressure Cooker Test (120C 100% RH 2atm 96 hrs)</td>
<td>240</td>
<td>0</td>
</tr>
<tr>
<td>TS</td>
<td>Temp Shock (-55C -- 125C 100 cycles)</td>
<td>180</td>
<td>0</td>
</tr>
<tr>
<td>MSL1</td>
<td>Moisture Sensitivity Level 1 (JEDEC)</td>
<td>900</td>
<td>0</td>
</tr>
</tbody>
</table>
Clocks in High Speed Digital Systems

- CPU
 - Serial Transmit
 - Serial Receive
- Parallel Interface
- CPU, GPU, Memory, etc.
- Serial Transmit
- Serial Receive
- Peripheral
- CLOCKs at various points in the system.
The system cares about the product of two filters: The PLL loop response and the period jitter filter response.

Mostly a function of the internal PLL and the clocking strategy, not the clock.

However, a high frequency reference simplifies the PLL.

Faster cleaner edges help in noisy environments.

Differential clock signals advantageous for both high frequency and low noise.
State Machine (Processor) Clocking

- Processors, microcontrollers
- Application processors (graphics, network, etc)
- State-machines, DSP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Application Requirements</th>
<th>MEMS Timing Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>1 MHz to 600 MHz</td>
<td>1 MHz to 800 MHz</td>
</tr>
<tr>
<td>Frequency Stability</td>
<td>25 ppm to 50 ppm</td>
<td>10 ppm to 50 ppm</td>
</tr>
<tr>
<td>Period Jitter</td>
<td>4 ps to 100 ps (RMS)</td>
<td>1.5 ps to 15 ps</td>
</tr>
<tr>
<td>Cycle-to-cycle (C2C) jitter</td>
<td>20 ps to 500 ps</td>
<td>8 ps to 100 ps</td>
</tr>
<tr>
<td>IDD</td>
<td>10 mA to 200 mA</td>
<td>3 mA to 100 mA</td>
</tr>
<tr>
<td>Start-up time</td>
<td>5 ms to 50 ms</td>
<td>3 ms to 30 ms</td>
</tr>
<tr>
<td>Spread Spectrum clocking (for EMI reduction)</td>
<td>Down-spread, Center-spread 0.5%, 1%, 2%, 4%</td>
<td>All option readily available</td>
</tr>
</tbody>
</table>
Parallel Communication Clocking

- Similar filter function as state machines.
- However, specs are not discretionary to IC design team.
- Must meet industry standards.
- Might not own both ends of data path.
- Again, high frequency and differential signaling are advantageous.
Parallel Communication Clocking

- DDR, DDR2, DDR3
- HyperTransport

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Application Requirements</th>
<th>MEMS Timing Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>33 MHz to 400 MHz</td>
<td>1 MHz to 800 MHz</td>
</tr>
<tr>
<td>Frequency Stability</td>
<td>50 ppm</td>
<td>10 ppm to 50 ppm</td>
</tr>
<tr>
<td>Period Jitter</td>
<td>4 ps to 100 ps (RMS)</td>
<td>1.5 ps to 15 ps</td>
</tr>
<tr>
<td>Cycle-to-cycle (C2C) jitter</td>
<td>20 ps to 500 ps</td>
<td>8 ps to 100 ps</td>
</tr>
<tr>
<td>Multi-cycle jitter (50 cycle)</td>
<td>75 ps to 500 ps</td>
<td>40 ps to 120 ps</td>
</tr>
<tr>
<td>Spread Spectrum clocking (for EMI reduction)</td>
<td>Down-spread, Center-spread 0.5%, 1%, 2%, 4%</td>
<td>All options readily available</td>
</tr>
</tbody>
</table>
Serial Communication Clocking

- Filter function a product of transmit PLL and receive PLL.
- Must meet industry standards, some of which are stringent.
- Usually will not own both sides of the data path.
- High frequency and differential signaling are often required.
Serial Communication Clocking

- Computing: PCI-Express, FireWire, USB2.0, USB3.0, Infiniband
- Storage: SATA, SAS, FibreChannel
- Networking: Ethernet, GbE, 10GbE, XAUI
- Consumer: EPON, GPON, Mobile Industry Processor Interface (MIPI), HDMI

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Application Requirements</th>
<th>MEMS Timing Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>12 MHz to 666 MHz</td>
<td>1 MHz to 800 MHz</td>
</tr>
<tr>
<td>Frequency stability</td>
<td>25 ppm, 50 ppm</td>
<td>10 ppm to 50 ppm</td>
</tr>
<tr>
<td>Phase jitter budget</td>
<td>~30% of total system budget</td>
<td>10% typical for most widely used applications – see next slide</td>
</tr>
<tr>
<td>Spread Spectrum clocking (for EMI reduction)</td>
<td>Down-spread 0.5%</td>
<td>Readily available</td>
</tr>
</tbody>
</table>
Serial Communication Clocking

Clock jitter filter response:

\[H_{\text{JitFilt}} = H_{\text{TXPLL}}(1 - H_{\text{RXPLL}}) \]
Serial Communication Clocking

<table>
<thead>
<tr>
<th>Application</th>
<th>Jitter Margin Consumed by MEMS Oscillators</th>
</tr>
</thead>
<tbody>
<tr>
<td>FiberChannel</td>
<td>9% (1 Gbps), 12% (2 Gbps), 20% (4 Gbps)</td>
</tr>
<tr>
<td>GPON, EPON</td>
<td>14%, 21%</td>
</tr>
<tr>
<td>10GBE</td>
<td>9% (XAUI), 26% (Optical, XFP)</td>
</tr>
<tr>
<td>USB2.0, USB3.0</td>
<td>3% (USB2.0 Device), 7% (USB2.0 Hub), 8% (USB3.0)</td>
</tr>
<tr>
<td>PCI-Express</td>
<td>5% (Embedded clock), 7% (C. RefClk), 12% (CC. Gen-II)</td>
</tr>
<tr>
<td>SATA</td>
<td>4% (1.5 Gbps), 6% (3 Gbps), 12% (6 Gbps)</td>
</tr>
<tr>
<td>IEEE1394b (FireWire)</td>
<td>7% (400 Mbps), 11% (800 Mbps), 13% (1600 Mbps)</td>
</tr>
<tr>
<td>Infiniband</td>
<td>15% (device), 8% (slot)</td>
</tr>
</tbody>
</table>
Features that Quartz Generally Does Not Provide

High frequencies, unusual frequencies, and differential outputs:
• MEMS oscillators have internal PLL’s so they easily supply high frequencies.
• Available to 220 MHz single ended, 800 MHz differential, highly programmable.
• SiTime’s PLL’s are differential, so they easily supply differential outputs.

Spread spectrum and voltage control (VCXO functionality):
• Spread and voltage controlled oscillators available in each product family.
• SiTime offers the world’s only single chip differential spread oscillator.

Multi-outputs:
• Additional circuits readily supply multiple outputs.
• Up to three independent frequencies, formats, and supply voltages.
• Differential and single-ended or combinations.

Low defect rates, short lead times:
• Defect rates in the parts per millions, and sub-3 FIT (Failures In Time).
• Same day samples, two week production quantities.
A Few Additional Examples

Extreme shock survival

- We have tested to 50 kG shock, vibration, acceleration etc, with no failures.
- Our parts have survived customer shock tests in which all quartz failed.

Wide temperature operation

- -70 to +130 C with only 5 ppm frequency variation – quartz doesn’t do this.
- Applications in defense.

Ultra thin packaging

- SiTime 8003XT is only 0.25 mm thick – thinner than 3 sheets of paper.
- Design wins in smart SIM cards.
Available Now From SiTime

Low power, high stability:
8003, 8033, 9102, 8102

Performance, differential:
8103, 8102, 8002, 9102

Spread, multi-output:
9001, 9002, 9003, 9104

Voltage control, automotive:
3701, 8002AA
Technology Transitions

<table>
<thead>
<tr>
<th>OLD</th>
<th>NEW</th>
<th>YEARS</th>
<th>WHY REPLACED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog cell phones</td>
<td>Digital cell phones</td>
<td>6</td>
<td>Spectrum efficiency, features</td>
</tr>
<tr>
<td>CRT displays</td>
<td>LCD displays</td>
<td>8</td>
<td>Size, image, weight, cost</td>
</tr>
<tr>
<td>Film cameras</td>
<td>Digital cameras</td>
<td>8</td>
<td>Ease of use, sharing, cost</td>
</tr>
<tr>
<td>Balls in tubes</td>
<td>MEMS accelerometers</td>
<td>5</td>
<td>Reliability, accuracy</td>
</tr>
<tr>
<td>Quartz gyroscopes</td>
<td>MEMS gyroscopes</td>
<td>6</td>
<td>Cost, size</td>
</tr>
<tr>
<td>Electrets</td>
<td>MEMS microphones</td>
<td>4</td>
<td>Size, PCB assembly</td>
</tr>
<tr>
<td>Quartz timing</td>
<td>MEMS timing</td>
<td>?</td>
<td>Size, reliability, lead time, new functions, cost</td>
</tr>
</tbody>
</table>

Years = introduction to crossover
Thank you

Questions?