POWER7: IBM's Next Generation Server Processor

Ronald Kalla
POWER7 Chief Engineer

Balaram Sinharoy
POWER7 Chief Core Architect

Acknowledgment: This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002
Outline

- POWER Processor History
- POWER7™ Motivation
- Design Overview
- Summary
20+ Years of POWER Processors

Major POWER® Innovation
- 1990 RISC Architecture
- 1994 SMP
- 1995 Out of Order Execution
- 1996 64 Bit Enterprise Architecture
- 1997 Hardware Multi-Threading
- 2001 Dual Core Processors
- 2001 Large System Scaling
- 2001 Shared Caches
- 2003 On Chip Memory Control
- 2003 SMT
- 2006 Ultra High Frequency
- 2006 Dual Scope Coherence Mgmt
- 2006 Decimal Float/VSX
- 2006 Processor Recovery/Sparing
- 2009 Balanced Multi-core Processor
- 2009 On Chip EDRAM

* Dates represent approximate processor power-on dates, not system availability
POWER7 Processor Chip

- 567mm² Technology: 45nm lithography, Cu, SOI, eDRAM
- 1.2B transistors
 - Equivalent function of 2.7B
 - eDRAM efficiency
- Eight processor cores
 - 12 execution units per core
 - 4 Way SMT per core
 - 32 Threads per chip
 - 256KB L2 per core
- 32MB on chip eDRAM shared L3
- Dual DDR3 Memory Controllers
 - 100GB/s Memory bandwidth per chip sustained
- Scalability up to 32 Sockets
 - 360GB/s SMP bandwidth/chip
 - 20,000 coherent operations in flight
- Advanced pre-fetching Data and Instruction
- Binary Compatibility with POWER6

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.*
POWER7 Design Principles:

Multiple optimization Points

- Balanced Design
 - Multiple optimization points
 - Improved energy efficiency
 - RAS improvements

- Improved Thread Performance
 - Dynamic allocation of resources
 - Shared L3

- Increased Core parallelism
 - 4 Way SMT
 - Aggressive out of order execution

- Extreme Increase in Socket Throughput
 - Continued growth in socket bandwidth
 - Balanced core, cache, memory improvements

- System
 - Scalable interconnect
 - Reduced coherence traffic

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.

Graphs for illustration purposes only (Not actual data)
POWER7 Design Principles:

Flexibility and Adaptability

- **Cores:**
 - 8, 6, and 4-core offerings with up to 32MB of L3 Cache
 - Dynamically turn cores on and off, reallocating energy
 - Dynamically vary individual core frequencies, reallocating energy
 - Dynamically enable and disable up to 4 threads per core

- **Memory Subsystem:**
 - Full 8 channel or reduced 4 channel configurations

- **System Topologies:**
 - Standard, half-width, and double-width SMP busses supported

- **Multiple System Packages**

 2/4s Blades and Racks
 - Single Chip Organic
 - 1 Memory Controller
 - 3 4B local links

 High-End and Mid-Range
 - Single Chip Glass Ceramic
 - 2 Memory Controllers
 - 3 8B local links
 - 2 8B Remote links

 Compute Intensive
 - Quad-chip MCM
 - 8 Memory Controllers
 - 3 16B local links (on MCM)

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
POWER7: Core

- **Execution Units**
 - 2 Fixed point units
 - 2 Load store units
 - 4 Double precision floating point
 - 1 Vector unit
 - 1 Branch
 - 1 Condition register
 - 1 Decimal floating point unit
 - 6 Wide dispatch/8 Wide Issue
- **Recovery Function Distributed**
- **1,2,4 Way SMT Support**
- **Out of Order Execution**
- **32KB I-Cache**
- **32KB D-Cache**
- **256KB L2**
 - Tightly coupled to core
POWER7: Performance Estimates

POWER7 Continues Tradition of Excellent Scalability

- Core performance increased by:
 - Re-pipelined execution units
 - Reduced L1 cache latency
 - Tightly coupled L2 cache
 - Additional execution units
 - More flexible execution units
 - Increased pipeline utilization with SMT4 and aggressive out of order execution

- Chip Performance Improved Greater than 4X:
 - High performance on chip interconnect
 - Improved cache utilization
 - Dual high speed integrated memory controllers

- System
 - Advanced SMP links will provide near linear scaling for larger POWER7 systems.

* Performance estimates relate to processor only and should not be used to estimate projected server performance.
Energy Management: Architected Idle Modes

Two Design Points Chosen for Technology

- **Nap** (optimized for wake-up time)
 - Turn off clocks to execution units
 - Reduce frequency to core
 - Caches and TLB remain coherent
 - Fast wake-Up

- **Sleep** (optimized for power reduction)
 - Purge caches and TLB
 - Turn off clocks to full core and caches
 - Reduce voltage to V-retention
 - Leakage current reduced substantially
 - Voltage ramps-up on wake up
 - No core re-initialization required
Adaptive Energy Management: Energy Scale™

- Chip FO4 Tuned for Optimal Performance/Watt in Technology

- DVFS (Dynamic Voltage and Frequency Slewing)
 - -50% to +10% frequency slew independent per core
 - Frequency and voltage adjusted based on:
 - Work load and utilization.
 - On board activity monitors

- Turbo-Mode
 - Up to 10% frequency boost
 - Leverages excess energy capacity from:
 - Non worst case work loads
 - Idle cores

- Processor and Memory Energy Usage can be independently Balanced.
 - Real time hardware performance monitors used.
 - On board power proxy logic estimates power

- Power Capping Support
 - Allows budgeting of power to different parts of system

![SPEC Power vs Load Level Graph](image)
POWER7: Reliability and Availability Features

- **Dynamic Oscillator Failover**
 - OSC0
 - OSC1

- **Fabric Bus Interface to other Chips and Nodes**
 - ECC protected
 - Node hot add /repair

- **Core Recovery**
 - Leverage speculative execution resources to enable recovery
 - Error detected in GPRs FPRs VSR, flushed and retried
 - Stacked latches to improve SER

- **Alternate Processor Recovery**
 - Partition isolation for core checkstops

- **L3 eDRAM**
 - ECC protected
 - SUE handling
 - Line delete
 - Spare rows and columns

- **GX IO Bus**
 - ECC protected
 - Hot add

- **InfiniBand® Interface**
 - Redundant paths

- **64 Byte ECC on Memory**
 - Corrects full chip kill on X8 dimms
 - Spare X8 devices implemented

- **Dual memory chip failures do not cause outage**
 - Selective memory mirror capability to recover partition from dimm failures
 - HW assisted scrubbing
 - SUE handling
 - Dynamic sparing on channel interface
 - PowerVM Hypervisor protected from full dimm failures

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.*
Summary

Power Systems™ continue strong

- 7th Generation Power chip:
 - Balanced Multi-Core design
 - EDRAM technology
 - SMT4
- Greater then 4X performance in same power envelope as previous generation
- Scales to 32 socket, 1024 threads balanced system
- Building block for peta-scale PERCS project

POWER7 Systems Running in Lab

- AIX®, IBM i, Linux® all operational

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.