GS464V: A High-Performance Low-Power XPU with 512-Bit Vector Extension

Weiwu Hu, Yunji Chen
Institute of Computing Technology, Chinese Academy of Sciences
Loongson Technologies Corporation Limited
hww@ict.ac.cn, cyj@ict.ac.cn
Contents

- Background
- The XPU architecture of GS464V
- Godson chips based on GS464V

Godson is the academic name of Loongson
TOP10 HPCs in 2008.11

<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>Computer/Year Vendor</th>
<th>Cores</th>
<th>R_{max}</th>
<th>R_{peak}</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DOE/NNSA/LANL United States</td>
<td>Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2008 IBM</td>
<td>129600</td>
<td>1105.00</td>
<td>1456.70</td>
<td>2483.47</td>
</tr>
<tr>
<td>2</td>
<td>Oak Ridge National Laboratory United States</td>
<td>Jaguar - Cray XT5 QC 2.3 GHz / 2008 Cray Inc.</td>
<td>150152</td>
<td>1059.00</td>
<td>1381.40</td>
<td>6950.60</td>
</tr>
<tr>
<td>3</td>
<td>NASA/Ames Research Center/NASA United States</td>
<td>Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0/2.66 GHz / 2008 SGI</td>
<td>51200</td>
<td>487.01</td>
<td>608.93</td>
<td>2090.00</td>
</tr>
<tr>
<td>4</td>
<td>DOE/NNSA/LLNL United States</td>
<td>BlueGene/L - eServer Blue Gene Solution / 2007 IBM</td>
<td>212992</td>
<td>478.20</td>
<td>596.38</td>
<td>2329.60</td>
</tr>
<tr>
<td>5</td>
<td>Argonne National Laboratory United States</td>
<td>Blue Gene/P Solution / 2007 IBM</td>
<td>163840</td>
<td>450.30</td>
<td>557.06</td>
<td>1260.00</td>
</tr>
<tr>
<td>6</td>
<td>Texas Advanced Computing Center/Univ. of Texas United States</td>
<td>Ranger - SunBlade x6420, Opteron QC 2.3 GHz, Infiniband / 2008 Sun Microsystems</td>
<td>62976</td>
<td>433.20</td>
<td>579.36</td>
<td>2000.00</td>
</tr>
<tr>
<td>7</td>
<td>NERSC/LBNL United States</td>
<td>Franklin - Cray XT4 QuadCore 2.3 GHz / 2008 Cray Inc.</td>
<td>38642</td>
<td>266.30</td>
<td>355.51</td>
<td>1150.00</td>
</tr>
<tr>
<td>8</td>
<td>Oak Ridge National Laboratory United States</td>
<td>Jaguar - Cray XT4 QuadCore 2.1 GHz / 2008 Cray Inc.</td>
<td>30976</td>
<td>205.00</td>
<td>260.20</td>
<td>1580.71</td>
</tr>
<tr>
<td>9</td>
<td>NNSA/Sandia National Laboratories United States</td>
<td>Red Storm - Sandia/ Cray Red Storm, XT3/4, 2.4/2.2 GHz dual/quad core / 2008 Cray Inc.</td>
<td>38208</td>
<td>204.20</td>
<td>284.00</td>
<td>2506.00</td>
</tr>
<tr>
<td>10</td>
<td>Shanghai Supercomputer Center China</td>
<td>Dawning 5000A - Dawning 5000A, QC Opteron 1.9 Ghz, Infiniband. Windows HPC 2008 / 2008 Dawning</td>
<td>30720</td>
<td>180.60</td>
<td>233.47</td>
<td></td>
</tr>
</tbody>
</table>
Top10 HPCs in 2009.11

<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>Computer/Year Vendor</th>
<th>Cores</th>
<th>R_{max}</th>
<th>R_{peak}</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oak Ridge National Laboratory, United States</td>
<td>Jaguar - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.</td>
<td>224162</td>
<td>1759.00</td>
<td>2331.00</td>
<td>6950.60</td>
</tr>
<tr>
<td>2</td>
<td>DOE/BNL/LLNL, United States</td>
<td>Roadrunner - Bladecenter Q22/LS21 Cluster, PowerXCell 8i 3.2 GHz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2009 IBM</td>
<td>122400</td>
<td>1042.00</td>
<td>1375.78</td>
<td>2345.50</td>
</tr>
<tr>
<td>3</td>
<td>National Institute for Computational Sciences/University of Tennessee, United States</td>
<td>Kraken XT5 - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.</td>
<td>98328</td>
<td>831.70</td>
<td>1028.85</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Forschungszentrum Juelich (FZJ), Germany</td>
<td>JUGENE - Blue Gene/P Solution / 2009 IBM</td>
<td>294912</td>
<td>825.50</td>
<td>1002.70</td>
<td>2268.00</td>
</tr>
<tr>
<td>5</td>
<td>National SuperComputer Center in Tianjin/NUDT, China</td>
<td>Tianhe-1 - NUDT TH-1 Cluster, Xeon E5640/E5450, ATI Radeon HD 4870 2, Infiniband / 2009 NUDT</td>
<td>71680</td>
<td>563.10</td>
<td>1206.19</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NASA/Ares Research Center/NAS, United States</td>
<td>Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0 GHz/Nehalem EP 2.93 GHz / 2009 SGI</td>
<td>56320</td>
<td>544.30</td>
<td>673.26</td>
<td>2348.00</td>
</tr>
<tr>
<td>7</td>
<td>DOE/BNL/LLNL, United States</td>
<td>BlueGene/L - eServer Blue Gene Solution / 2007 IBM</td>
<td>212992</td>
<td>478.20</td>
<td>596.38</td>
<td>2329.60</td>
</tr>
<tr>
<td>8</td>
<td>Argonne National Laboratory, United States</td>
<td>Blue Gene/P Solution / 2007 IBM</td>
<td>163840</td>
<td>458.61</td>
<td>557.06</td>
<td>1260.00</td>
</tr>
<tr>
<td>9</td>
<td>Texas Advanced Computing Center/Univ. of Texas, United States</td>
<td>Ranger - SunBlade x6420, Opteron QC 2.3 GHz, Infiniband / 2008 Sun Microsystems</td>
<td>62976</td>
<td>433.20</td>
<td>579.38</td>
<td>2000.00</td>
</tr>
<tr>
<td>10</td>
<td>Sandia National Laboratories / National Renewable Energy Laboratory, United States</td>
<td>Red Sky - Sun Blade x6275, Xeon X56xx 2.93 Ghz, Infiniband / 2009 Sun Microsystems</td>
<td>41616</td>
<td>423.90</td>
<td>487.74</td>
<td></td>
</tr>
</tbody>
</table>
Top 10 HPCs in 2010.6

<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>Computer/Year Vendor</th>
<th>Cores</th>
<th>R_{max}</th>
<th>R_{peak}</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oak Ridge National Laboratory, United States</td>
<td>Jaguar - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009, Cray Inc.</td>
<td>224162</td>
<td>1759.00</td>
<td>2331.00</td>
<td>6950.60</td>
</tr>
<tr>
<td>2</td>
<td>National Supercomputing Centre in Shenzhen (NSCS), China</td>
<td>Nebulae - Dawning TC3500 Blade, Intel X5650, NVidia Tesla C2050 GPU / 2010, Dawning</td>
<td>120640</td>
<td>1271.00</td>
<td>2844.30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DOE/NNSA/LANL, United States</td>
<td>Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 GHz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2009, IBM</td>
<td>122400</td>
<td>1042.00</td>
<td>1375.78</td>
<td>2345.50</td>
</tr>
<tr>
<td>4</td>
<td>National Institute for Computational Sciences/University of Tennessee, United States</td>
<td>Kraken XT5 - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009, Cray Inc.</td>
<td>98928</td>
<td>831.70</td>
<td>1028.85</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Forschungszentrum Juelich (FZJ), Germany</td>
<td>JUGENE - Blue Gene/P Solution / 2009, IBM</td>
<td>294912</td>
<td>825.50</td>
<td>1002.70</td>
<td>2268.00</td>
</tr>
<tr>
<td>6</td>
<td>NASA/Ames Research Center/NASA, United States</td>
<td>Pleiades - SGI Altix ICE 8200EX/8400EX, Xeon HT QC 3.0/Xeon Westmere 2.93 GHz, Infiniband / 2010, SGI</td>
<td>81920</td>
<td>772.70</td>
<td>973.29</td>
<td>3096.00</td>
</tr>
<tr>
<td>7</td>
<td>National SuperComputing Center in Tianjin/NUDT, China</td>
<td>Tianhe-1 - NUDT TH-1 Cluster, Xeon E5540/E5450, ATI Radeon HD 4870 2, Infiniband / 2009, NUDT</td>
<td>71680</td>
<td>563.10</td>
<td>1206.19</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>DOE/NNSA/LLNL, United States</td>
<td>BlueGene/L - eServer Blue Gene Solution / 2007, IBM</td>
<td>212992</td>
<td>478.20</td>
<td>596.38</td>
<td>2329.60</td>
</tr>
<tr>
<td>9</td>
<td>Argonne National Laboratory, United States</td>
<td>Intrepid - Blue Gene/P Solution / 2007, IBM</td>
<td>163840</td>
<td>458.61</td>
<td>557.06</td>
<td>1260.00</td>
</tr>
<tr>
<td>10</td>
<td>Sandia National Laboratories / National Renewable Energy Laboratory, United States</td>
<td>Red Sky - Sun Blade x6275, Xeon X55xx 2.93 GHz, Infiniband / 2010, Sun Microsystems</td>
<td>42440</td>
<td>433.50</td>
<td>497.40</td>
<td></td>
</tr>
</tbody>
</table>
What Next ?
No. 1 ?
Build HPCs with domestic designed CPU!
CPU Plan of China

- Design CPU for HPC is part of the National S&T Major Project for CPU
 - the National Mid-Term S&T Plan from 2006-2020

- 16 Major Projects, each fund USD 5-10B from 2006-2020
 - CPU and OS
 - VLSI process technology
 - Next-generation (4G) wireless network
 - High-end digital machine tool
 - Advanced nuclear fission power plant
 - Water pollution control and treatment
 - Large aircraft
 - High-resolution earth-observation system
 - Manned space flight and lunar exploration
 -
CPU Development Plan

- **10th Five Year Plan (2001-2005):**
 - Startup and key technology research
 - Four-Issue OOO Architecture, 1.0GHz

- **11th Five Year Plan (2006-2010):**
 - From emulation to innovation, low- to high-end, research to product
 - Multi-core CPU with leading performance, CPU company setup
 - Desktop, servers, and HPC products based on domestic designed CPU

- **12th and 13th Five Year Plan (2011-2020):**
 - Build a new ecosystem to support the IT industry in China
 - Start from National Security, education, e-government,
Godson CPU Briefs

- **Research Stage:** started in 2001.
 - The 32-bit Godson-1 in 2002 is the first CPU in China
 - The 64-bit Godson-2B in 2003.10
 - The 64-bit Godson-2C in 2004.12
 - The 64-bit Godson-2E in 2006.03
 - Each Triple the performance of its previous one
 - SPEC int2000 and SPEC fp2000 of Godson-2E > 500

- **Product Stage:** started in 2008
 - Low end: SOCs for low-cost PC and consumer electronics
 - High end: multi-core CPUs for server and HPCs
High end Roadmap: More cores on a chip

3A (2010)

3B (2011)

3C (2012)
Godson-3A

- 1.0GHz@65nm CMOS, 10W
- 425M transistors, area 174.5mm2
- Four GS464 cores
 - 64-bit MIPS64 Compatible
 - HW support for X86 binary translation
 - Four-issue, OOO
 - 64KB+64KB L1 (four-way)
- 4MB L2
- Two on-chip DDR2/3 controller.
- Two 16-bit HT
- PCI/PCIX, LPC, GPIO, etc.
- SPEC int2000 rate and SPEC fp2000 rate 25
- The architecture presented in HOTCHIPS2008
Low end Roadmap: From CPU to SOC

2F (2008)

2G (2010)

2H (2011)
Godson-2G

- 1.0GHz@65nm CMOS, 3W
- 100M transistors, area 60mm2
- Single GS464 cores
 - 64-bit MIPS64 Compatible
 - HW support X86 binary translation
 - Four-issue, OOO
 - 64KB+64KB L1 (four-way)
- 1MB L2
- On-chip DDR2/3 controller.
- 16-bit HT
- PCI/PCIX, LPC, GPIO, etc.
GS464: A “typical” 4-issue 64-bit CPU Core

- MIPS64 compatible, 200+ instructions for X86 emulation
- Four-issue 64-bit superscalar OOO pipeline
- Two fix, two FP, one memory units
- 64KB icache and 64KB dcache, 4-way
- 64-entry TLB, 16-entry ITLB
- Directory-based cache-coherence
- Parity check for icache, ECC for dcache
- EJTAG for debugging
- Adopted by Godson-2G and Godson-3A
GS464 Architecture

AGU: Address Generation Unit
ALU: Arithmetic Logic Unit
BTB: Branch Target Buffer
BHT: Branch Target Buffer
BRQ: Branch Reorder Queue
DTLB: Data Translation Look-aside Buffer
FTLB: Instruction Translation Look-aside Buffer
FPU: Floating-Point Unit
FPU1: Floating-Point Unit
FPU2: Floating-Point Unit
ITLB: Instruction Translation Look-aside Buffer
ROQ: ReOrder Queue
TAP: Test Access Port
UCQ: Uncache Access Queue
Contents

- Background
- The XPU architecture of GS464V
- Godson chips based on GS464V
XPU Idea

- **Obstacles of Moore's Law**
 - Memory Wall: memory hierarchy
 - Power consumption Wall: multi-core architecture
 - Bandwidth Wall: XPU architecture

- **Why XPU?**
 - CPU: separate data and computation, flexible & low efficiency
 - GPU: tightly coupled data and computation: not flexible & high efficiency
 - XPU: Reconfigurable data for computation, flexible & high efficiency

- **XPU=CPU+DSP+MPU+...**
GS464V Architecture Features

- Keeps all GS464 features, and extended by:
 - Extend each 64-bit FP unit to 256-bit SIMD vector unit
 - Two vector units (dual issue 256-bit SIMD)
 - Each core has eight 64-bit MACs
 - Keep MIPS64 compatible
- 128-entry 256-bit register file
- 300+ SIMD instructions (Linpack, FFT, filter, media……)
- The XPU architecture
- Adopted by Godson-2H/Godson-3B
Micro-architecture of GS464V
Feeding the Starving Vector Unit

- With limited bandwidth, how to provide enough data in required format to feed the vector unit?
 - Two 256-bit vector unit, limited bandwidth
 - Use the bandwidth more efficiently

- Special data link for vector unit
 - Data moves in parallel with computation
 - Data are move continuously in large blocks
 - Reorganizing data in the way from memory/cache to VR, as required by applications.
Godson Super Link (GSL)

- Direct and reconfigurable data transfer between vector register and cache/memory
 - Matrix transposing
 - Bit revert
 - Entropy decoding
 - ……

- Memory access coprocessor
 - Multiple Godson Super-Link
 - Flow control among GSLs
 - Synchronize with GS464V
Programing Model

{

 GSL_transfer_data(from, to, format);
 // independent codes
 GSL_wait_transfer_complete;
 // codes depend on the transferred data
}

Parallel data movement and computation: Linpack as an example

- Computation and shuffle in parallel
- Computation and data transferring in parallel
 - VR↔L2
 - VR↔mem
Computation and Shuffling in one Instruction: Vector Instruction for FFT
Computation and Shuffling in one Instruction: Vector Instruction for Linpack
Computation and Shuffling in one Instruction: Vector Instruction for Media
Performance Results

- With FPGA prototyping and RTL simulation, GS464V achieves excellent performance

- Eight-core godson-3B (64 MACs, 2 DDR3) achieves
 - >93% of peak performance for matrix multiplication
 - >87% of peak performance for 1024 point complex FFT
 - 0.37us for 1024 point floating point FFT at 1GHz

- 1080p high definition H.264 decoding with single core at 1GHz
 - >100 frames per second
GDSII of GS464V (65nm)
Contents

- Background
- The XPU architecture of GS464V
- Godson chips based on GS464V
 - Multi-core chips for servers and HPCs
 - SOC chips for low-cost PC
8-core Godson-3B

8 four-issue 64-bit core
2*256-bit Vector Ext. per core
1.0GHz@65nm
128GFLOPS@40W
2 DDR3, 2 HT Controllers
583M xtors, 300mm²
Taped out 2010.5
16-core Godson-3C

16 four-issue 64-bit Core
2*256-bit Vector Ext. per core
1.5-2.0GHz@28nm
384-512GFLOPS@20W
4 DDR3, 4 HT Controllers
To be taped out 2011
Godson-2H for Low-cost PC

- 1GHz@65nm
- GS464V (HD media decoding)
- 512KB L2
- 3D low power GPU
- DDR2/3 memory controller
- PCIE 2.0 controller
- SATA, USB, GMAC controller
- LPC, SPI, UART, etc.
- Single chip solution for low cost PC
- To be taped out 2010Q4
Dawning Blades with Godson-3A/3B
Personal HPC Node

1. Opteron Card
2. Dual Godson-3A/3B card
3. 5HT+1 PCI-E x8 board
4. HPP node
1U16P Board for HPC

1U2T with Godson-3B
1U8T with Godson-3C
Conclusion

- XPU: convergence of CPU/DSP/MPU/GPU
 - Vector Unit + Godson Super Link
 - Provides enough data with correct format to feed the starving CPU
 - Data is reorganized in the way from memory to register

- Achieves high performance
 - 93% Matrix multiplication, 87% FFT for 8-core Godson-3B
 - >100 frames 1080p H.264 decoding for single core 1GHz Godson-2H

- Godson chips and applications
 - Godson-3B/3C: High-end computing
 - Godson-2H: Low-cost PC and media applications
Thanks
Abbreviations

- CPU Central Processing Unit
- MPU Media Processing Unit
- GPU Graphic Processing Unit
- XPU eXtra Processing Unit
- OOO Out-of-Order
- HT HyperTransport
- NB North Bridge
- SB South Bridge
- AXI An Open Standard On-chip Interconnect Specification of ARM
- GSL Godson Super-Link
- GDS Graphic Database System
- SPI Serial Peripheral Interface
- LPC Low Pin Count