“Bulldozer”
A new approach to multithreaded compute performance

Mike Butler, AMD Fellow
Chief Architect / Bulldozer Core

August 24, 2010
Two x86 Cores Tuned for Target Markets

“Bulldozer”
Performance & Scalability
Mainstream Client and Server Markets

“Bobcat”
Flexible, Low Power & Small
Low Power Markets
Small Die Area
Cloud Clients Optimized
“Bulldozer” x86 Architecture: AMD’s Latest Leap Forward

- Two tightly linked cores share resources to increase efficiency
- ISA extensions, including FP “FMAC”
- Extensive new power efficiency and management innovations
- Designed for knee-of-the-curve IPC features and low gates/clock
- 2011 desktop and server
Approaches for Supporting Multiple Threads

SMT
- Force two threads into one core
- Threads compete for resources
- Relies on under-utilization

CMP
- Dedicated cores for each thread
- Traditional brute force approach
- Each core is over-provisioned

However, there is another way . . .
Bulldozer Concept

Start with 2 cores:
- Fully-capable core performance level

Share hardware when:
- Usage is naturally bursty for a single thread
- Little impact on timing and complexity of critical paths
- Benefit from increasing amortized bandwidth

Invest:
- Increase shared bandwidth/capacity
- Aggressive features to benefit both threads
 - E.g. data prefetch
Bulldozer

What it is:
- A monolithic dual core building block that supports two threads of execution

How it works:
- Shares latency-tolerant functionality
- Smoothes bursty/inefficient usage
- Dynamic resource allocation between threads

Customer Benefits:
- Greater scalability and predictability than two threads sharing a single core
- Throughput advantages for multi-threaded workloads without significant loss on serial single-threaded workload components
- When only one thread is active, it has full access to all shared resources
- Estimated average of 80% of the CMP performance with much less area and power *

*Based on internal AMD modeling using benchmark simulations
Core Microarchitecture – Shared Frontend

- Decoupled predict and fetch pipelines
- Prediction-directed instruction prefetch
- Icache: 64K Byte, 2-way
- 32-Byte fetch
- ITLBs:
 - L1: 72-entry, FA, mixed page sizes
 - L2: 512-entry, 4-way, 4K pages
- Branch fusion
Core Microarchitecture – Dedicated Cores

- Thread retire logic
- PRF-based register renaming
- Unified scheduler per core
- Way-predicted 16K Byte L1 Dcache
- DTLB: 32-entry fully associative
- Fully out-of-order ld/st
 - 2 128-bit loads/cycle
 - 1 128-bit store/cycle
 - 40-entry Load queue
 - 24-entry Store queue
Core Microarchitecture – Shared FPU

- Co-processor organization
- Reports completion back to parent core
- Dual 128-bit FMAC pipes
- Dual 128-bit packed integer pipes
- PRF-based register renaming
- Unified scheduler (for both threads)
Core Microarchitecture – Shared L2

- 16-way unified L2 cache
- L2 TLB and page walker
 - 1024-entry, 8-way
 - Services both I-side and D-side requests
- Multiple data prefetchers (more on this later)
- 23 outstanding L2 cache misses for memory system concurrency
Prediction-Directed Instruction Prefetch

- Prediction Pipeline is free to run ahead and fill the prediction queue (per thread)
 - Produces sequence of future RIps
 - Only back-pressure is via full prediction queue stall
- Instruction Fetch pipeline uses future RIps to check for future misses in the shadow of a demand miss
 - Overlaps instruction miss requests to L2/memory
- Large L1 + L2 BTB capacity captures footprint
Multiple Data Prefetchers

- Aggressive Stride-based data prefetchers
 - Large number of strides
 - Large stride size
 - L1 and L2 predictors

- Non-strided data prefetcher
 - Captures correlated data accesses that don’t have fixed stride relationship

- Robust performance characteristics
 - Applicability to wide range of client and server workloads
 - Backoff/throttling mechanism under heavy demand load
Thread Control and Selection Mechanisms

Each core is logical processor from viewpoint of software
Bulldozer ISA and Feature Extensions

- **Instruction Set Extensions**
 - SSE 4.1 and 4.2
 - AVX
 - 256-bit YMM registers
 - Non-destructive source operand capability
 - AES subset
 - FMAC subset (AMD 4-operand form)
 - XSAVE state space management
 - XOP Instructions

- **Light Weight Profiling (LWP)**
 - Low-overhead user-level profiling
 - Uses XSAVE state space
 - Stores records for configured events
 - Instructions retired
 - Branches retired
Power Efficiency and APM

- Start with inherently power-efficient micro-architecture and implementation:
 - Dynamic sharing of shared resources
 - Minimize data movement
 - Extensive clock and power gating

- Add active management support:
 - Digitally measure activity to estimate power
 - Hardware uses higher frequency when power limit allows

- Support for chip-level core power gating

* Based on internal AMD modeling using benchmark simulations
Concluding Remarks

- Bulldozer at the heart of AMD’s 2011 family of mainstream and high-performance processors
- Major investments in
 - Power / Area efficiency
 - New ISA support
 - Scalability of Cores
 - Modular Design Approach
- Significant improvement in Performance/Watt/mm²
 - General purpose throughput
 - Estimated average of 80% of the CMP performance with much less area and power*
 - Single-thread performance

*Based on internal AMD modeling using benchmark simulations
Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names used in this presentation are for identification purposes only and may be trademarks of their respective owners.

© 2010 Advanced Micro Devices, Inc. All rights reserved.