SeaMicro SM10000-64 Server

Building Datacenter Servers Using Cell Phone Chips

Ashutosh Dhodapkar, Gary Lauterbach, Sean Lie, Dhiraj Mallick, Jim Bauman, Sundar Kanthadai, Toru Kuzuhara, Gene Shen, Min Xu, Chris Zhang
Overview

- Power in the Datacenter
- Application Trends
- SeaMicro Architecture
 - CPU Selection
 - Interconnect Fabric
 - I/O Virtualization
 - Management Software
- Application Performance
- Summary
Power: The Issue in the Datacenter

- **Power is the largest Op-Ex item** for an Internet company; >30% of Op Ex

- Volume servers consume 1% of the electricity in the US – More than $3 Billion dollars per year *

- Datacenters reaching power limits
 - Reducing power will extend life of existing datacenters – saving 100’s of millions of dollars in CapEx

* 2007 EPA Report to Congress on Server and Data Center Efficiency, Public Law 109-43
Power Provisioning for a Warehoused Sized Compute
Cloud’s Killer Apps

- **Compute moving to server side**
 - Clients primarily for display: smart phones, tablets, etc.

- **Free to users - cost amortized over large user base**
 - Optimizing datacenter TCO is critical to profitability
 - Costs: bandwidth, power, servers, switching, storage, firewalls, load balancers, buildings, management

- **Growing exponentially**
 - Datacenters facing new challenges around logistics of “super-size”

- **Killer apps**
 - are collections of **small, simple, and bursty workloads**
 - have **big data sets, high concurrency, lots of communication**
SeaMicro Architecture

- **Cluster in a box**: integrated compute, storage, and network.
- Large number of inexpensive, energy-efficient “Cell Phone” CPUs interconnected using a low-latency, high-bandwidth fabric.
- Unlike multi-core, provides natural scaling of all system resources:
 - O/S threads, networking stack
 - Memory bandwidth and capacity
 - NICs and network bandwidth
 - Disk controllers, disk bandwidth/capacity
- **Purpose built for Cloud’s Killer Apps**: architecture maps well to internet workloads.

Purpose built for Cloud’s Killer Apps: architecture maps well to internet workloads.
SeaMicro Architecture: CPU

Purpose built for Cloud’s Killer Apps

- Collection of small, simple, and bursty workloads
- Big data sets, high concurrency, lots of communication

CPU: Intel Atom™, a “Cell Phone” CPU

- Better match the workload
- Leverage efficiencies of Scale Down: operate at a more efficient point on the energy-performance curve*
- Derive cost advantage from smaller silicon area and higher volumes
- Superior Performance/Watt/$ compared to server class CPUs

SeaMicro Architecture: Fabric

Purpose built for Cloud’s Killer Apps

- Collection of small, simple, and bursty workloads
- Big data sets, high concurrency, lots of communication

512 CPUs interconnected using a high bandwidth fabric in a 3D torus topology

- High scalability: distributed architecture based on low-power ASICs
- High bandwidth: 1.28Tbps
- Low-latency: < 5us between any two nodes
- High resiliency: multitude of paths between two nodes allowing easy routing around failures
SeaMicro Architecture: I/O Virtualization

Virtualized I/O devices

- Network/storage shared and amortized over large number of CPUs
- Improves utilization and enables optimizations, e.g. shared partitions
- Reduces components in the system, thus improving cost/power
SeaMicro ASIC

- 90nm G TSMC technology
- 15 mm² per node
- 289 pin plastic BGA package
- **Low power: <1W per node**

Key Features:
- Fabric switch
- I/O virtualization
- Clock generation
- Node management
SeaMicro Fabric

- 512 logical fabric nodes
 - ASIC contains 2 fabric nodes

- Each node has
 - 6 fabric links (2.5Gb/s SERDES) to neighboring nodes (2X, 2Y, 2Z)
 - 1 PCIe link to a CPU
 - Crossbar to switch between 7 links

- Nodes connected in an 8x8x8 3D Torus
 - Each dimension is an 8-node loop
 - Total bandwidth is 1.28 Tbps
 - High path diversity for redundancy

- Fabric is cut-through, loss-less, deadlock free, has multiple QOS levels
I/O Virtualization

- Node presents 4 virtual devices to CPU
 - PCIe: Ethernet adapter, 4 SATA disks
 - LPC (ISA): BIOS, UART

- Node packetizes data from CPU and routes it through the fabric to multiple shared I/O cards
 - Ethernet traffic is routed to other nodes or network I/O cards with uplink ports
 - Each node is a port on a distributed switch. Internal MAC addresses are hidden behind I/O card
 - Table at ingress port on I/O card provides fabric destination
 - Nodes keep track of destination ports for external MACs. Fabric address encoded in Internal MAC
 - Disk, BIOS, and Console requests are routed to storage I/O cards which hold up to 8 SATA disks
I/O Aggregation Cards

- **Bridge between the fabric and I/O**
 - Connected to the fabric in the Y-dimension
 - Terminate fabric protocol on one side and talk to I/O devices on the other

- **Two types of I/O cards**
 - E-Card: 1G/10G network connectivity
 - S-Card: SATA storage, BIOS, Console

- **Any node can talk to any I/O card**
 - 1 E-Card and 1 S-Card per Z-plane
I/O Card Architecture

- **Co-designed architecture**
 - HW/SW boundary flexible: optimized for performance
 - High speed datapaths implemented in FPGA
 - Control plane implemented in microprocessor
 - FPGA enables rapid feature enhancement based on customer feedback. Power/cost amortized over 100’s of nodes
SM10000-64 Server

- 10 RU chassis
- Dual mid-plane fabric interconnect
- 64 compute cards
 - 4 ASICs/card: 512 fabric nodes
 - 4-6 Dual-core CPUs/card: 512-768 cores
 - 4GB DRAM/CPU: 1-1.5TB DRAM
- 1-8 shared Ethernet cards:
 - Up to 160 Gb/s external connectivity
- 1-8 shared Storage cards:
 - Up to 64 SATA/SSD drives
- Shared infrastructure:
 - N+1 redundant Power supplies, fans, management Ethernet and console
Management Software

- **Implements key real-time services**
 - Fabric routing: fault isolation and failover
 - Ethernet control plane (MAC/IP learning, IGMP)
 - Layer4 load balancer management
 - Terminal server
 - Power supply and fan control

- **Configuration, Management, and Monitoring**
 - Integrated DHCP server
 - CLI and SNMP interfaces for network/storage/server management
 - Performance/Fault monitoring tools
Benchmark: Apache Bench

SM10000-64 consumes 1/4th the power, for equivalent performance

- Apache 2.2 with Apache Bench. CPUs running CentOS 5.4
- Retrieve 16KB files over 10 min.

<table>
<thead>
<tr>
<th>System Configuration</th>
<th>SeaMicro</th>
<th>1U Xeon Server</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SM10000-64 256 x Dual Core 1.66GHz Atom processors</td>
<td>Industry Standard Dual Socket Quad Core Xeon L5630 2.13GHz</td>
</tr>
<tr>
<td>Systems Under Test</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>Apache Throughput/Sec</td>
<td>1,005,056</td>
<td>1,005,120</td>
</tr>
<tr>
<td>Apache Request File Size</td>
<td>16KB</td>
<td>16KB</td>
</tr>
<tr>
<td>System Power</td>
<td>2,490W</td>
<td>10,090W</td>
</tr>
<tr>
<td>Space consumed in Racks</td>
<td>10 RU</td>
<td>45 RU</td>
</tr>
</tbody>
</table>
Summary: SM10000-64

- Internet workloads are increasingly moving compute to the server side.
- Minimizing Power and thus TCO of datacenters is critical to internet businesses.
- The SM10000-64 is a major step forward to address the challenges of the datacenter
 - Provides a 4x reduction in power/space for equivalent performance, compared to traditional 1RU servers.

Shipping in volume
- 768 Intel Atom cores, 1.5 TB DRAM, 1.28Tbps fabric
- 64 SATA/SSD disks, 160Gbps uplink network bandwidth
- Integrated load balancer and management SW
Thank You!