X-Gene™:
64-bit ARM CPU and SoC

Paramesh Gopi
Gaurav Singh
Greg Favor

8.29.2012
Cloud Computing Technology Trends

- **High Density Servers → “Sea of CPUs”**
 - Smaller & power-efficient CPUs; Beefier memory & IO subsystems
 - Distributed Fabric → networking & storage IO sharing & virtualization

- **Server-on-Chip (SoC) Approach**
 - Integrated NIC and IO chipset
 - CPU/ GPU combination for HPC applications

- **Active Power Management**
 - Firmware based optimization based on user Workload (Power is measured through TDP)
 - Maximize performance while managing TDP

- **Server Standardization**
 - Service provider specified
 - ODM designed & manufactured
 - Open Source/ non-commercial SW base
 - Open Stack, Open Compute

Fabric Interconnect between Rack Units
Cloud Servers - Typical Form Factors

Public Cloud

Applications
- Scale Out Services → Hosted Mail, Search, Social, Cloud Hosting

Platforms
- Dell PowerEdge C, HP ProLiant Microserver, DCS custom

Typical Specifications
- 1/2 Socket 2/4 core 2.8GHz, 80W
- 280 SpecIntRate
- System Power <500W; Cost <$2K

Building Out vs. Scaling Out

TODAY: 2 RU
- 2 Nodes per Rack Unit
- 2 Sockets @ 95W each
- Shared Chassis, Power Supply & Cooling
- Google, FB, Amazon Custom Datacenters

3 RU
- 8/12 Nodes in 3RU
- Single Socket @ 45W
- Shared Chassis, Power Supply, & Cooling
- Dell PowerEdge 5220, Supermicro MicroCloud

TOMORROW: 10 RU
- 256/ 512 Nodes in 10RU
- Single Socket @ 10-20W
- Shared IO Resources
- Integrated ToR Switch
- SeaMicro SM10000, HP Redstone
Opportunities from Hardware

Integration
- Cores + memory + networking + I/O
- Lower latency, better QoS
 - Multiple Priorities
 - B/W guarantees

Efficient Out-of-Order Cores
- Break tradeoff between wimpy and brawny cores
- Energy efficiency at good performance (ARM-based processors are well suited here)

Virtualization Support
- Improve utilization without hurting performance

Highly Integrated Server on Chip
Efficient Low Latency Interconnect

Cloud Requirements → Integrated, Right-Sized **Compute. Memory. Network.**
ARMv8 (Oban): Fully Backwards Compatible
New 64b ISA + Current 32b ISA

New: ARMv8

- 64b (General) and 128b (FP,SIMD) registers
- SP, PC no longer general purpose registers
- Uniform load/store addressing modes
- Larger data and instr. offset ranges
- Simplified load/store multiple instructions

- Reduced conditional instructions
- 32 128b FP/SIMD architecture registers
- No SIMD on general purpose registers
- New instructions for debug, TLB, barriers
- New Crypto acceleration instructions

ARMv8

- New High Performance 64bit ISA + compatibility with existing 32bit ISA
- Full CPU, IO, Interrupt, Timer Virtualization
- Enhanced 128b SIMD operations
- High performance Floating-Point operations including FMADD
- Standard Performance Monitoring, Instr. Trace and Debug Architecture
X-Gene™ CPU Design Goals

- **High-Performance Low-Power Microarchitecture**
 - Design point targets balance between performance, power, and size
 - Maximum “bang for the buck”

- **Low Power Microarchitecture Features**
 - Sophisticated branch prediction, Caches, Unified register renaming
 - Minimal instruction replay cases
 - Separate smaller schedulers per pipe
 - Full set of power management features

- **Good Single-Thread Performance, but also Efficiently Scalable to Many Cores**
 - Scalable CPU and interconnect architecture 2-128 cores
 - High bandwidth, low latency switch fabric > 1Tbps
 - High-performance distributed hardware cache coherency

- **Technology Portability**
 - Fully synthesizable RTL
 - Semi-custom cell-based design methodology
 - Small targeted set of custom macros (plus clock distribution cells/macros)
X-Gene™ Processor Module

Processor Module
- 2 cores + shared L2 cache
- 4 wide out-of-order superscalar microarchitecture
- Integer, scalar, HP/SP/DP FPU and 128b SIMD engine
- Hardware virtualization support
- Hardware tablewalk and nested page tables
- Full set of static and dynamic power management features
 - Fine grain/macro clock gating, DVFS
 - C0, C1, C3, C4, C6 states

Cache Hierarchy
- Separate L1I and L1D caches
- Shared L2 cache among 2 CPUs
- Last-level globally shared L3 Cache
- Advanced hardware prefetch in L1 and L2
- L2 inclusive of L1 write-thru data caches

RAS
- ECC and Parity protection of all Caches, Tags, TLBs
- Data poisoning and error isolation
I-Cache & Fetch Unit

- Fetch multiple instructions /cycle
- Instruction pre-decode bits stored with each cache-line
- Single cycle scan to pick next predicted taken branch
- 2-level branch prediction
- Branch Target Buffer
- Conditional, call/return branch predictors
- History based indirect branch predictors
- First level fully-associative L1 TLB
X-Gene™ Instructions Decoding/Grouping

Decoding /Grouping

- Quad instruction grouping
- On the fly “CISC” instruction to RISC OP mapping
- Full renaming of registers
- Dispatch into execution schedulers
- No dispatch constraints on instruction grouping
X-Gene™ Reorder Buffer, Dispatch and Control

Pipeline Control
- Branch checkpoint buffer
- Re-order buffer
- Unified register file
X-Gene™ Integer, Branch, Load and Store Units

- Separate branch pipe
- Out of order schedulers
- Two integer ops /cycle
- Fully pipelined execution units
- Separate load and store pipes
- Memory disambiguation
Floating Point & SIMD Unit

- Separate FP/SIMD renamer
- Out of order scheduler
- Full frequency scalar FPU
- Full frequency int/FP SIMD unit
- Fully pipelined operations
- FP/SIMD Load and FP/SIMD Store and Reg Op per cycle
X-Gene™ Data Cache

Data Cache
- First level fully-associative TLB
- Write-through to L2 with write-combining
- Store to load forwarding
- Banked data arrays for performance and low power
Memory Management Unit

- Set-associative second-level TLB
- Supports all architecture page sizes
- Nested page-table walker

X-Gene™ Memory Management

- Set-associative second-level TLB
- Supports all architecture page sizes
- Nested page-table walker
X-Gene™ – CPU Memory Subsystem

High-performance Symmetric Multi-core Design
- Modular architecture
- Three level cache hierarchy
- Globally shared L3 Cache

Coherent Network
- Runs at full CPU frequency
- <15ns latency, ~200GB/s B/W
- Over 400 transactions in flight
- Central snoop controller and ordering point
- Decoupled frequency and power domains
- Support global cache and TLB inv operations

Bridges
- Memory Bridges to DRAM interfaces
- IO Bridge for SOC connectivity
X-Gene™ Server on Chip

64bit ARM Server Class CPU → Multi-core for Distributed Computing
Increased Memory Capacity and 10G I/O Integration
Integrated Peripherals and L2 Switching
Workload Specific Specific Acceleration

Available: 2H’12
Right Sizing + Connected On-Chip Fabric

- **Customizable Blade Design**
 - Configurable swappable blades within 1 sled
 - Networking/ Compute/ Storage shared over common bed of CPUs → Saves Power & Cost

- **Overall System Optimization**
 - Integrated NIC and IO chipset
 - Load Balancing Across multiple blades to Optimize System Balance
 - Shared Resources for System Management, Power and Cooling

- **System Capabilities**
 - 1000s of CPU cores in 10RU
 - 100s of CPU cores per blade
 - 100s of Gbps of network bandwidth
 - 10s of Tbps of interconnect fabric bandwidth
X-Gene™