SPARC64™ X:
Fujitsu’s New Generation 16 Core Processor
for the next generation UNIX servers

August 29, 2012
Takumi Maruyama
Processor Development Division
Enterprise Server Business Unit
Fujitsu Limited
Agenda

◆ Fujitsu Processor Development History

◆ SPARC64™ X
 ■ Design concept
 ■ SWoC (Software on Chip)
 ■ Processor chip overview
 ■ u-Architecture
 ■ Performance

◆ Summary
SPARC64™ X Design Concept

◆ Combine UNIX and HPC FJ processor features to realize an extremely high throughput UNIX processor.
 - SPARC64 VII/VII+ (UNIX processor) feature
 - High CPU frequency (up-to 3GHz)
 - Multicore/Multithread
 - Scalability: up-to 64 sockets
 - SPARC64 VIII fx (HPC processor) feature
 - HPC-ACE: Innovative ISA extensions to SPARC-V9
 - High Memory B/W: peak 64GB/s, Embedded Memory Controller

◆ Add new features vital to current and future UNIX servers
 - Virtual Machine Architecture
 - Software On Chip
 - Embedded IOC (PCI-GEN3 controller)
 - Direct CPU-CPU interconnect
Software on Chip 1/2

◆ HW for SW
Accelerates specific software function with HW

◆ The targets
■ Decimal operation (IEEE754 decimal and NUMBER)
■ Cypher operation (AES/DES)
■ Database acceleration

◆ HW implementation
■ The HW engines for SWoC are implemented in FPU
 • To fully utilize 128 FP registers & software pipelining
■ Implemented as instructions rather than dedicated co-processor to maximize flexibility of SW.
■ Avoid complication due to “CISC” type instructions
 • Various “RISC” type instructions are newly defined, instead.
 • 18 insts. for Decimal, and 10 insts. for Cypher operation
Abstracted Instructions

Supported data type
- IEEE754 DPD (Densely Packed Decimal) 8B fixed length
- NUMBER Variable length (max 21Byte)

Instructions
- Both DPD/NUMBER instructions are defined as 8B operation (add/sub/mul/div/cmp) on FP registers
 - To maximize performance with reasonable HW cost
 - When the data length is > 8byte, multiple such instructions will be used.
- An instruction for special byte-shift on FP registers is newly added to support unaligned NUMBER
SPARC64™ X Chip Overview

- **Architecture Features**
 - 16 cores x 2 threads
 - SWoC (Software on Chip)
 - Shared 24 MB L2$
 - Embedded Memory and IO Controller

- **28nm CMOS**
 - 23.5mm x 25.0mm
 - 2,950M transistors
 - 1,500 signal pins
 - 3GHz

- **Performance (peak)**
 - 288GIPS/382GFlops
 - 102GB/s memory throughput
SPARC64™ X Core spec

<table>
<thead>
<tr>
<th>Instruction Set Architecture</th>
<th>SPARC-V9/JPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HPC-ACE</td>
</tr>
<tr>
<td></td>
<td>VM</td>
</tr>
<tr>
<td></td>
<td>SWoC</td>
</tr>
<tr>
<td>Branch Prediction</td>
<td>4K BRHIS</td>
</tr>
<tr>
<td></td>
<td>16K PHT</td>
</tr>
<tr>
<td>Integer Execution Units</td>
<td>156 GPR x 2 + 64 GUB</td>
</tr>
<tr>
<td></td>
<td>ALU/SHIFT x2</td>
</tr>
<tr>
<td></td>
<td>ALU/AGEN x2</td>
</tr>
<tr>
<td></td>
<td>MULT/DIVIDE x1</td>
</tr>
<tr>
<td>FP Execution Units</td>
<td>128 FPR x 2 + 64 FUB</td>
</tr>
<tr>
<td></td>
<td>FMA x4, FDIV x2</td>
</tr>
<tr>
<td></td>
<td>IMA/Logic x4</td>
</tr>
<tr>
<td></td>
<td>Decimal x1 / Cypher x2</td>
</tr>
<tr>
<td>L1$</td>
<td>L1I$ 64KB/4way</td>
</tr>
<tr>
<td></td>
<td>L1D$ 64KB/4way</td>
</tr>
</tbody>
</table>
u-Architecture enhancements from SPARC64™ VII+

CPU Core
- Deeper pipeline to increase Frequency
- Better Branch Prediction Scheme
- Various Queue-size and #Floating point register increase
- Richer execution Units, including
 - 2EX + 2EAG → 2EX + 2EX/EAG
 - 2FMA → 4FMA to support 2way-SIMD
 - SWoC engine (Decimal and Cypher)
- More aggressive O-O-O-O execution of load and store
- Multi-banked 2port L1-Cache

System On Chip
- #core and L2$ size (4core/12MB→16core/24MB)
- Memory Controller, IO Controller, and CPU-CPU I/F are all embedded to increase performance and reduce cost.
Execution units enhancements (Ex.)

◆ Integer Execution Unit
 - 2EX + 2EAG → 2EX + 2EX/EAG
 - 2 → 4W GPR
 → 4 integer instructions can be executed per cycle (sustained)

◆ Load Store Unit
 - Aggressive load/store O-O-O execution:
 ● Execute load without waiting for preceding store address calculation.
 - Multi-banked 2port L1-cache to execute 2 load or 1 load+1 store in parallel
 - Doubled L1$ bus size
 - Doubled L1$ associativity (2→4way)
 → Increase L1-cache throughput and hit-rate
SPARC64™ X interconnects

SPARC64™ VII/VII+ interconnects
(SPARC Enterprise M8000)

- 4 CPU require 8 additional LSIs to be connected with DIMM
- DIMM i/f: 4.35GB/s (STREAMtriad)

SPARC64™ X interconnects

- No additional LSIs to be connected with DIMM
- DIMM i/f: 65.6GB/s (STREAMtriad)
- CPU i/f: 14.5GB/s x 5ports (peak)
 - 3 ports: glueless 4way CPU interconnect
 - 2 ports: > 4way CPU
High Speed Transceivers (SerDes)

CPU-CPU glue-less communication links
- 14.5Gb/s x 8 lanes bi-directional serial interface, 5 ports
- Embedded equalizer circuit enables long distance signal transmission
- Embedded adaptive control logic optimizes equalizer parameters automatically depending on the various system configurations

PCI Express ports
- 8Gb/s x 8 lanes (Gen 3), 2 ports

Built-in SerDes provides peak 88.5GB/s x2 (up/down) total throughput
New RAS features from SPARC64™ VII/VII+
- Floating-point registers are ECC protected
- #checkers increased to ~53,000 to identify a failure point more precisely

→ Guarantees Data Integrity

<table>
<thead>
<tr>
<th>Units</th>
<th>Error detection and correction scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache (Tag)</td>
<td>ECC Duplicate & Parity</td>
</tr>
<tr>
<td>Cache (Data)</td>
<td>ECC Parity</td>
</tr>
<tr>
<td>Register</td>
<td>ECC (INT/FP) Parity(Others)</td>
</tr>
<tr>
<td>ALU</td>
<td>Parity/Residue</td>
</tr>
<tr>
<td>Cache dynamic degradation</td>
<td>Yes</td>
</tr>
<tr>
<td>HW Instruction Retry</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>Yes</td>
</tr>
</tbody>
</table>

SPARC64™ X RAS diagram

Green: 1bit error Correctable
Yellow: 1bit error Detectable
Gray: 1bit error harmless
Hardware Instruction Retry

1. Error
2. Flush
3. Single step execution
4. Update of SW visible resources
5. Back to normal execution after the re-executed Instruction gets committed without an error.

When an error is detected, Hardware re-execute the instruction automatically to remove the transient error by itself.
SPARC64™ X realizes 7x INT/FP/JVM throughput and 15x memory throughput of SPARC64™ VII+

- The INT/FP/JVM result is with un-tuned Compiler/JVM.

SWoC of SPARC64™ X results in max 98x throughput.

- The NUMBER score is for scalar. Expect to be much better for vector data.
SPARC64™ X CPI (Cycle Per Instruction) Example

SPARC64™ VII+ v.s. SPARC64™ X
INT (single thread)

- 4 integer execution units and write port increase of GPR (integer register) improves overall performance.
- Memory latency reduction, Large L2$, branch prediction, and L1$ improvement also contribute to the high performance dramatically.

Hardware measured results

- Shorter memory latency
- Large L2$
- 2→4way L1$
 Increased throughput of L1$
- 2EX+2EAG→2EX+2EX/EAG
- 2→4W GPR

→

Lower Performance

Higher Performance
Summary

◆ SPARC64™ X is Fujitsu’s 10th SPARC processor which has been designed to be used for Fujitsu’s next generation UNIX server.

◆ SPARC64™ X integrates 16 cores + 24MB L2 cache with over 100GB/s (peak) memory B/W.

◆ SPARC64™ X keeps strong RAS features.

◆ SPARC64™ X chip is up and running in the lab.
◆ It has shown 7 times throughput of SPARC64™ VII+ w/o compiler tuning.
◆ SWoC is effective to accelerate specific software functions

◆ Fujitsu will continue to develop SPARC64™ series.
Abbreviations

- **SPARC64™ X**
 - IB: Instruction Buffer
 - RSA: Reservation Station for Address generation
 - RSE: Reservation Station for Execution
 - RSF: Reservation Station for Floating-point
 - RSBR: Reservation Station for Branch
 - GUB: General Update Buffer
 - FUB: Floating point Update Buffer
 - GPR: General Purpose Register
 - FPR: Floating Point Register
 - CSE: Commit Stack Entry