Roadmap for Design and EDA Infrastructure for 3D Products

Riko Radojcic
Qualcomm
E-mail : rikor@qualcomm.com
Tel : 1 858 651 7235

HotChips 2012
Cupertino, CA
Aug 2012
Some of the Typical 3D Options

<table>
<thead>
<tr>
<th>2.5D</th>
<th>Side by side die stacked on a passive interposer that includes TSVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Memory</td>
<td>Multiple DRAM die stacked standalone or on an active interposer</td>
</tr>
<tr>
<td>3D Memory on Logic</td>
<td>One or More DRAM die stacked directly on logic die (M-0-L)</td>
</tr>
<tr>
<td>3D Logic on Logic</td>
<td>Multiple logic die stacked on top of each other (L-o-L)</td>
</tr>
<tr>
<td>3D + Interposer</td>
<td>Mix of side by side and stacked schemes with a passive or active interposer</td>
</tr>
</tbody>
</table>
Evolving to “Mainstream” 3D Technologies

- For 3D stacking
 - e.g. Wide IO Memory on Logic
 - stacking orientation: F2B
 - TSV via diameter ~ 5μ
 - wafer thickness ~ 50
 - uBump Array pitch: 40x50
Snapshot of Intrinsic Technology Status

<table>
<thead>
<tr>
<th>Process</th>
<th>Was (common concern a few years ago)</th>
<th>Is (our take)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High aspect ratio (10:1) 5/50 TSV process</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Thinning & Backside wafer processing</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Microbump and Joining</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Integration & Stacking</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Intrinsic Reliability Assessment</td>
<td>✹ in flight</td>
<td></td>
</tr>
<tr>
<td>Standards (JEDEC, SEMI, Sematech, 3D EC, …)</td>
<td>✹ in flight</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design (M-o-L)</th>
<th>Was (common concern a few years ago)</th>
<th>Is (our take)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDA tools (for “2D-like” Memory-on-Logic design)</td>
<td>✹ mostly</td>
<td></td>
</tr>
<tr>
<td>Design Enablement (for “2D-like” Memory-on-Logic design)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Testability (for “2D-like” Memory-on-Logic design)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Variability (Corner for “2D-like” Memory-on-Logic design)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Standards (JEDEC, Si2, IEEE …)</td>
<td>✹ in flight</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Was (common concern a few years ago)</th>
<th>Is (our take)</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Level Value Proposition</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Thermal Modeling & Design for Thermal</td>
<td>✹ in flight</td>
<td></td>
</tr>
<tr>
<td>Stress Modeling & Design for Stress</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>SI modeling & Design for Parametric Yield</td>
<td>✓ in flight</td>
<td></td>
</tr>
<tr>
<td>Cost Structure & Business Models</td>
<td>✹ TBD</td>
<td></td>
</tr>
<tr>
<td>Yield and Yield Learning</td>
<td>✹ TBD</td>
<td></td>
</tr>
<tr>
<td>Volume Manufacturing Ramp</td>
<td>✹ TBD</td>
<td></td>
</tr>
</tbody>
</table>
Eco-System for 3D Design

- Segment Design Eco-System into 3 Buckets to Address 3 Key Challenges
 - **Design Authoring** – actual chip design
 - Implement Design via (mostly) Traditional 2D Chip Design Flow (RTL2GDS))
 - Output GDS
 - **PathFinding** – design/technology concept exploration
 - *Manage Choices* via Cheap, Quick & Dirty Concept Design
 - Output Clean Specs
 - **TechTuning** – physical space exploration
 - *Manage Interactions* via Cheap, Electrical, Thermal & Mechanical Chip Simulation
 - Output Clean Constraints
PathFinding: Why & What?

- Managing Choices ….
 - Want to optimize product attributes
 - Cost, power, performance, engineering …
- Need to Co-Optimize Process & Design
 - Winning 3D Product will Be Architected specifically to Leverage 3D Technology
 - Selection of choices is Product Specific
- In General: Need Spatial Awareness
 - Quick and flexible
 - Hi fidelity vis-a-vis accuracy
- For 3D: Also Need Heterogeneity
 - Multiple stacking styles & orientations
 - Multiple tech files
 - Multiple levels of hierarchy
 - Multiple resource constraints
- Structured Methodology.
 - Past experience not applicable
 - Opportunity for paradigm shifts
 - Not tied to Legacy design
 - Process-Design-Package co-optimization
PathFinding

- **Level 1 (Atrenta):** think
 - RTL & Netlists
 - Block Level Schematics
 - Partitions
 - Block assignments
 - T2T connectivity
 - Global Routing
 - Floorplans

- **Level 2 (MicroMagic):** think
 - Transistor Level Schematics
 - T2T layout
 - SPICE Netlist
 - Waveforms
 - Polygons
 - GDS
TechTuning: Why & What?

- Managing Interactions
 - Intimate Proximity and Coupling Between Die
 - In Electrical, Thermal & Mechanical Domains

- Electrical Domain Interactions
 - Within Die Interactions with New Features
 - Substrate noise, Coupling etc..
 - Die to Die interactions (SI, PDN, PI…)

- Thermal Domain Interactions
 - Within a Die & Die to Die
 - Need Thermal Rules & Guidelines
 - Design Specific & Technology Specific
 - Need a methodology to plug into std design flow

- Stress Domain Interactions
 - Within a Die & Die to Die
 - Need Stress Rules & Guidelines
 - Design Specific & Technology Specific
 - Need a methodology to plug into std design flow

Details: 3D IC Stacking Technology, McGraw Hill 2011
3D Electrical Interactions

- Many Possible Interactions
 - Die to Die – close proximity
 - Within a Die – new features

- New Geometries: not just simply planar
 - uBump to BRDL
 - TSV to BRDL
 - TSV to TSV
 - TSV to M1

- New Features: not just conductor or insulator
 - MOS nature of TSV & Semiconductor nature of Si
 - e.g. Substrate Noise Coupling: TSV to Device
 - vs. substrate thickness
 - vs. Doping Profile in the Si substrate
 - vs. TSV to Device Separation
 - vs. Substrate Tap & Guard Ring Configuration
 - etc…

- **Need true 3D Chip Level Extraction & Coupling Analyses**
 - Or a restricted layout with pre-characterized macro model
Thermal Challenges => a Fundamental Constraint

- Thermal: a Global (=System Level) & Local (=Component Level) Challenge
 - Global Concern: must manage skin temperature and overall system power
 - Local Concern: must manage hot spots, junction temperature, and power density
 - Compounding Factor: all advanced systems use some form of Thermal Mitigation

- Thermal is not a 3D-only Challenge
 - A Problem that has to be addressed with 2D Components as well…
 - At Architecture, Design, Floorplanning, Packaging, Application, Software …
 - Could be a 3D Opportunity?

- Need a System-Chip Co-Design Methodology & Tools
 - Faster and More Flexible than the traditional CFD / FEA methodologies
 - Compatible with cross – company handshake (a la TDP practice in PC domain)
 - Compatible with fuzzy PathFinding-like forward looking inputs
 - Compatible with different system level ‘knobs’
 - Compatible with different chip level ‘knobs’

![Diagram showing 2D vs. 3D thermal performance](image-url)
Implementation of a TechTuning Flow for Stress

- Interface to actual Design Authoring: **Rules now**
 - maybe in-flow model based simulation later..
 - Based on ‘off-line’ simulations using specialized tools
 - Define a ‘Safe Operating Area’ => a set of rules
 - Supplement with a smart ‘hot spot’ checker to close the loop

Traditional Simulation
- FEA methodology
- ~1 to 0.01mm range
- Hosted Model from AMKOR
- Working on similar deliverable from ASE

Specialized Simulation
- Submodeling & specialized FEA methodology
- μm to nm range
- SNPS FAMMOS tool

“Hot Spot” Checker
- Validation that bits and pieces fit & SIGN OFF the design
- Must interface to design environment: I/P: GDS2, LEF, DEF ...
- May have to be COMPACT MODEL Based (read the whole design and include all effects)
- Working with MENT
Managing Costs: What Does It Mean for TSS Design?

- Expect Gradual and Graceful Evolution
 - Process and Design – together / in synch
 - Significant investment in the existing flow
 - Will be Applications Driven

- Now: Heterogeneous Stacking
 - e.g. Memory (or Std Analog) on logic
 - Design Methodology Requirements
 - Partitioning: by die types w/ specific interface
 - Syntheses: 1-die-at-a-time
 - Floorplanning: constraint from the other die
 - Physical Design: partial 2-sided die (maybe)
 - Physical Verification: 1-die-at-a-time + interface
 - Analyses: whole stack (e.g. PDN)

- Next: Integrated Stack Designs
 - e.g. Logic-on-Logic or Interposers
 - Design Methodology Requirements
 - Integrated PD Co-Design w/ Interposer & Substrate
 - Design Constraint Methodology
 - Design Authoring – including the Package
 - Manufacturability (aka TechTuning)
3D PDN Design Flow

- **2D Ref Flow**
 - Sign off in time domain (Apache)
 - Analyses in frequency domain (Sigrity)

- **3D PDN Flow Approach**
 - Take as much as possible from ref flow
 - Similar approach as Si-Package-PCB Analyses
 - Extract each tier separately
 - Model as an integrated stack
 - Upgraded tools to understand new features
 - TSV, uBump, BRDL, Tier n ...

- **Current Status**
 - Demonstrated Tools & Flow
 - Supporting development of standard Compact PDN Models and associated 3D Design Exchange Format Standards
Inventory of Current Core Design Technologies

<table>
<thead>
<tr>
<th>Things We Do Have</th>
<th>PathFinding</th>
<th>TechTuning</th>
<th>Design Authoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ 3D Floorplanner</td>
<td>✓ Package Stress simulator</td>
<td>✓ 2D design flow & tools</td>
<td></td>
</tr>
<tr>
<td>✓ 3D Net generator</td>
<td>✓ Feature Stress simulator</td>
<td>✓ Timing with a fixed TSV/uBump layout</td>
<td></td>
</tr>
<tr>
<td>✓ PDN resource estimator</td>
<td>✓ Reference Thermal sim.</td>
<td>✓ 3D aware PI / SI analyses</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Things We are Working On</th>
<th>PathFinding</th>
<th>TechTuning</th>
<th>Design Authoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package PathFinder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System PathFinder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 3D design exchange formats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chip Level Stress Sim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chip thermal floorplanner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard 3D design exchange format & PDK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Things we do NOT Have (and wish we did)</th>
<th>PathFinding</th>
<th>TechTuning</th>
<th>Design Authoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology PathFinder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D in flow substrate coupling analyse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fully supported TechTuning “PDK’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System component thermal co-design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBD Logic on Logic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBD Interposer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBD 3D Extraction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBD 3D ++ (see below)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- We don’t have Everything – but we do have much more than Nothing 😊!!
Standards: a Lubricant for the Supply Chain

- **Leverage Existing Standards Bodies**
 - Established balloting, adoption and management practices
 - But formal and hence need ‘mature proposals’….

- **Process Standards**
 - 3D Enablement Center
 - Sematech
 - SEMI …

- **Design Standards**
 - Si2
 - 3D EC / SRC
 - IEEE
 - JEDEC…

- **Encourage Participation by the Industry – esp EDA**

Product Drivers

- **3D EC**
 - Sematech
 - 3D Enablement Center
 - Si2 / SRC
 - 3D EC

- **Design Standards**
 - Si2
 - 3D EC

- **Process Standards**
 - SEMI

- **EDA**
- **OSAT**
- **Consortia**
- **SRC**
 - Academia
 - others

- **Process Standards in 2011**
- **Design Standards in 2012**
2.5D / 3D Stacking Roadmap

Our Current Focus: Wide IO DRAM on Logic = TSS

Next: Logic on Logic / Interposer / Both …

- **TSS Logic on Logic**
- **TSS WideIO Memory on Logic**
- **Interposer Heterogeneous**
- **TSS Everything**
- **Not-Phone driven**
- **Vertical Stacking**
- **Side by Side Stacking**

In Production: POP

3D Integration Levels

- **W/B & FC Bump Stacking**
- **LPDDRx on Logic**
- **POP**
Design Environment for Memory-on-Logic

<table>
<thead>
<tr>
<th>Status</th>
<th>Arena</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have</td>
<td>Design</td>
<td>✓ 2D design flow & tools</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ quasi-manual placement of T2T / TSV array</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ custom T2T buffer design & incremental rules to manage interactions</td>
</tr>
<tr>
<td></td>
<td>Timing</td>
<td>✓ 2.5D analyses flow & tools</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ compound ‘lumped’ TSV delay model</td>
</tr>
<tr>
<td></td>
<td>PI</td>
<td>✓ 2D analyses flow and tools</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ extended hierarchy + recognition of new features</td>
</tr>
<tr>
<td></td>
<td>SI & Variability</td>
<td>✓ ‘Off Line’ analyses to produce set of ‘keep out’ rules</td>
</tr>
<tr>
<td>In Flight</td>
<td>‘In Line’ Rule Checkers</td>
<td>✓ Chip Level Stress Simulator – for ‘stress Hot Spots’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Chip Level Thermal Floorplanner</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Chip Level SI Simulator</td>
</tr>
<tr>
<td>Integration w/ Commercial Die</td>
<td></td>
<td>✓ 3D Design Exchange Formats</td>
</tr>
<tr>
<td>Like to Have</td>
<td>SI Analyses</td>
<td>☢ In Flow SI analyses – on line and in product flow</td>
</tr>
<tr>
<td></td>
<td>TechTuning & PathFinding</td>
<td>☢ Fully supported TechTuning “PDK”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☢ System-Component thermal co-design</td>
</tr>
</tbody>
</table>
Design Environment for Interposers

<table>
<thead>
<tr>
<th>Status</th>
<th>Arena</th>
<th>Item</th>
</tr>
</thead>
</table>
| Have | Design | ✓ 2D Layout tools
 | | ✓ 2D Extraction Tools | |
| Need to Have | Extraction | 🍓 Integrated 3D Extraction inc. TSV, routing and FRDL/BRDL |
| | Signal Integrity | 🍓 Integrated SI tools inc floating substrate and 3D features |
| | Power Integrity | 🍓 Integrated PI analyses tools & flow |
| | DFT/Test | 🍓 Integrated Double Sided Passive Floating Substrate |
| | PathFinding | 🍓 Architectural Trade Off Analyses for Value Proposition |
Design Environment for Logic on Logic

<table>
<thead>
<tr>
<th>Status</th>
<th>Arena</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have</td>
<td>Design</td>
<td>✔️ 2D Flow for One Single Sided Die & Technology at a time</td>
</tr>
<tr>
<td></td>
<td>PathFinding</td>
<td>✔️ 3D Physical PathFinding Flow for finding Value Proposition</td>
</tr>
<tr>
<td>Must Have</td>
<td>Floorplan</td>
<td>⚫ 3D with optimization across multiple tiers (technologies)</td>
</tr>
<tr>
<td></td>
<td>Utility Insertion</td>
<td>3D tools for global utilities – eg NoC, Clock, DFT….</td>
</tr>
<tr>
<td></td>
<td>Extraction</td>
<td>⚫ 3D Extraction inc. TSV, routing and FRDL/BRDL</td>
</tr>
<tr>
<td></td>
<td>Timing</td>
<td>⚫ across multiple tiers, technologies, libraries….</td>
</tr>
<tr>
<td></td>
<td>Power Integrity</td>
<td>Integrated PI analyses tools & flow</td>
</tr>
<tr>
<td></td>
<td>Signal Integrity</td>
<td>in flow SI analyses tools inc 3D features</td>
</tr>
<tr>
<td></td>
<td>DFT / Test</td>
<td>⚫ Optimized DFT overhead for pre-stack test</td>
</tr>
<tr>
<td></td>
<td>Verification</td>
<td>⚫ 3D Physical Verification, LVS, etc across multiple tiers</td>
</tr>
<tr>
<td></td>
<td>etc..</td>
<td>⚫ dependent on the actual stack partition</td>
</tr>
</tbody>
</table>
Thank You