NAND Technology

Krishna Parat
Intel Corporation

August 25th 2013
Stanford University, Palo Alto, California
NAND Flash

- Key Attribute: Non-volatile memory, Read access times of 10’s of us, Write/Erase times of ~ms, Page Programming, Block Erase, 10’s of K cycles W/E endurance
- Key applications: Data Storage, SSDs
- NAND has a simple cell and array structure
- NAND Flash has been leading in driving the Semiconductor technology scaling → low cost leader
Floating Gate Flash Memory Device

- Stacked Gate NMOS Transistor
 - Floating Gate for charge storage
 - Control Gate for accessing the transistor
 - Silicon dioxide for gate oxide (Tunnel oxide)
 - Oxide-Nitride-Oxide (ONO) for the inter gate dielectric
Flash Memory Cell

- **Program** = Electrons Stored on the Floating Gate → High Vt
- **Erase** = Remove electrons from the Floating Gate → Low Vt
- **Read** = Look for current through the cell at given gate bias
NAND Flash Program/Erase

- Programming is by tunneling electrons through the Tunnel-ox by applying a high gate voltage and grounding well & Source/Drain.
- Erase is by tunneling electrons through the Tunnel-ox by applying a high Well voltage and grounding the gate.
Multi Level Cell

1 bit/cell: 2 states:
 Level 0 = Erased
 Level 1 = Programmed

2 bits/cell: 4 states:
 Level 0 = Erased
 Level 1 = Programmed to L1
 Level 2 = Programmed to L2
 Level 3 = Programmed to L3

Having the threshold voltage of the cells defined to 2^n different levels allows for storing n bits per cell.
• Retention limits the dielectric scaling and Pgm/Ers voltage have remained high around ~20V
• Yet cell area has scaled per Moore’s law prediction into the mid 20nm without much difficulty
NAND Cell Scaling Issues At ~20nm

- Significant structural complexity as “wrapped” cell scales to 20nm half-pitch
- High E field issues are exacerbated in the “wrapped” cell with scaling
- Interference concerns with the wrapped cell
Planar Floating Gate Cell with Hi-K/Metal Gate successfully overcomes the scaling hurdle for 20nm and beyond.
NAND Cell Scaling

- 2D NAND cell scaling has reached below 20nm
- The planar cell structure addresses many of the scaling issues with the scaling of the conventional scaling
- So, how does the future of scaling look?
Scaling Effects

- As the cell dimensions scale:
 - Increased proximity leads to higher coupling to neighboring cells
 - interference from neighboring cells
 - Cell capacitance and hence number of electrons scale.
 - Higher impact of single electron events
 - The channel area scales.
 - Higher impact of 1/f noise
 - Less number of dopant atoms in the channel
 - Larger spread in native Vt due to doping fluctuations
Vt Distribution Widening

- As the physical cell size is scaled these parasitic issues – interference, single electron effects, trapping/de-trapping, disturbs, distributional effects – become worse
- Continued degradation in Vt distribution width from cell scaling will eventually become unacceptable
Voltage Scaling

- Program/Erase voltages ~20V
 - Large voltage + small pitch = Reliability risk
 - At ~10nm, WL-WL Electric field ~10MV/cm
2D NAND → 3D NAND

• Vertical NAND string
• Conductive or dielectric charge storage node
• Deposited poly-silicon channel
• Large foot-print of the 3D Cell will require quite a few layers to be stacked to achieve effective cell area scaling
• Increased demands on process technology – very high aspect ratio etches and fills
Competing 3D Cell structure options exist:

- **Vertical String** vs. **Horizontal String**
- Vertical string is more attractive for electrical properties
- Horizontal string is more attractive for cell size
- Either case will lead to increased block sizes
Vertical NAND MLC Scaling Benefit

- Vertical NAND String:
 1. Relaxes lithography constraint
 2. Relaxes voltage scaling constraint
- Larger physical cell size means less parasitic effects
- Channel quality and dielectric integrity must be engineered
 ➢ Potential for preserving MLC window while scaling cost
Summary

• NAND Flash has a simple array structure which has been highly amenable to scaling
• NAND Flash leads the industry in scaling
• Lithography induced scaling limits were overcome using advanced pitch reduction techniques
• Interference issues were contained through incorporation of air-gap at critical locations
• Wrap cell limits were overcome with planar FG cell using High-K dielectric / Metal gate
• 2D scaling can continue into the mid to low ~10nm
• Scaling beyond can come from transitioning to 3D
Acknowledgements

- I would like to thank the members of the Intel & Micron NVM team for helpful discussions as well as contribution to the material presented here.