Flash in an Enterprise Storage Array - 10x Performance for Less Than Disk

Presented by Neil Vachharajani
Enterprise Storage Arrays

Consolidated, manageable, and reliable
Enterprise Storage: $30B Market Built on Disk

- **Dominated by spinning disk**
 - Capacity is plentiful
 - Performance has stagnated
 - Random I/O workloads (virtualization) – subpar performance

- **Consumer space has transitioned to Flash**
 - Drives today’s smartphones, cameras, USB drives
 - Laptops and desktops come with solid-state drives (SSD)

- **Why not just put SSDs into today’s disk array?**
 - Current software systems are **optimized for disk**
 - Flash and disk are very different
 - Need storage arrays designed to leverage flash
Flash: Opportunities and Challenges

- **Opportunities**
 - Reads: Random access and fast
 - Performance isolation
 - Virtualized data layout

- **Challenges**
 - Device longevity
 - No in place overwrites
 - Read/write performance asymmetry
 - Cost $$
Pure Storage Architecture Principles

• Trade raw performance for simplicity and lower cost
 • Simplicity – prefer self-tuning system
 • Use CPU and surplus read bandwidth to reduce writes

• Don’t splurge on “enterprise” hardware
 • Leverage cost trends in the consumer space
 • Optimize array wide, not at the individual SSD level
The Pure Storage Flash Array

FA-400 Controller

Performance
- 400,000 8K IOPS
- 5 GB/s bandwidth
- <1ms average latency

Specifications
- 2x Intel “Sandy Bridge” 8-core CPUs
- 256GB DRAM
- 8Gb/s FC or 10Gb/s Ethernet
- 56Gb/s InfiniBand & 6Gb/s SAS
- 2U, 420W

Storage Shelves

SSDs
- 256 GB or 512 GB SSDs
- 100% MLC Flash

NVRAM
- Up to 2 NVRAM devices per shelf

Scale
- 20 – 100 TBs usable**
- 11 – 23 TBs raw flash (and growing!)

* Up to. Performance depends on workload and I/O mix.
** Usable depends on actual data reduction rate, average of 5-to-1. Usable includes RAID overhead, HA, and running up to 80% full.
How Purity Works

Protect
- Checksum
- Copy to NV-RAM

Reduce
- Pattern removal
- Deduplication
- Compression

Store
- Create RAID-3D segments
- Flush writes via flash scheduler

Validate & Serve
- Validate checksums

Multi-Path Read
- Read from fastest path via scheduler
- Decompress

Optimize

Flash Management
- Global wear leveling & refresh
- Global deletion management
- Integrity checking
Caring For Your Flash: Writing in Log Structure

- **Aligning to SSD Geometry**
 - Spare blocks encompass one or more SSD erase blocks
 - Writes encompass one or more SSD pages

- **Contiguous sectors not contiguous on flash**
 - Flash has great random read performance
FlashCare™: Optimizing Flash Globally

100% Virtualized Wide-Dispersed Data Layout
- No performance hot spots
- Evenly wears flash
- Bonus: no hot spares!

Flash Geometry-Aligned Writes
- Aligns with erase block boundaries
- Minimizes data movement “work” by SSD controller

Non-Blocking Reads & Writes
- Micro-schedules each SSD
- Isolates reads and writes to a SSD
- Re-issues IO to alternate location if SLA exceeded

Deep Write Pipelining
- Manage volatile SSD caches
- SW tolerates flush latency
- Optimized to leverage SSD bandwidth

Continuous Background Optimization
- Handles garbage collection and wear management globally
- Periodically refreshes flash cells for longer retention
- Verifies data integrity

Flash Personality Layer
- Understands ideal IO fingerprint of each SSD
- Allows for mixing multiple generations of flash in one system

© 2013 Pure Storage, Inc. | 9
Conclusions

• Data reduction in the field

 • Makes flash affordable for all

<table>
<thead>
<tr>
<th>DEDUPE TICKER</th>
<th>6.23:1</th>
<th>Average Data Reduction Rate (Deduplication + Compression Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.69:1</td>
<td>Average Total Reduction (Including Thin Provisioning)</td>
</tr>
</tbody>
</table>

• Enterprise system from commodity components
 • Non-disruptive everything
 - From software updates to hardware upgrades
 • With the Purity OS, components have proven extremely reliable
 • High performance - < 1 ms latency typical