Hotchips 2013: Clovertrail+ Smartphone SoC Platform

Mark Ewert
Prakash Iyer
Vandana Venkatesan
Legal Notices and Important Information
Regarding the performance measurements in this presentation

FTC Optimization Notice
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 Instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

General Performance Disclaimer/"Your Mileage May Vary"/Benchmark
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Estimated Results Benchmark Disclaimer
Results have been estimated based on internal Intel analysis and are provided for Informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance.

Processor Numbering Notice
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. Go to: http://www.intel.com/products/processor_number/

Intel® AES-New Instructions (Intel® AES-NI)
Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software to execute the instructions in the correct sequence. AES-NI is available on select Intel® processors. For availability, consult your reseller or system manufacturer. For more information, see http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/

Intel® Turbo Boost Technology
Requires a system with Intel® Turbo Boost Technology. Intel Turbo Boost Technology and Intel Turbo Boost Technology 2.0 are only available on select Intel® processors. Consult your PC manufacturer. Performance varies depending on hardware, software, and system configuration. For more information, visit http://www.intel.com/go/turbo

Intel® Hyper-Threading Technology (Intel® HT Technology)
Available on select Intel® Core™ processors. Requires an Intel® HT Technology-enabled system. Consult your PC manufacturer. Performance will vary depending on the specific hardware and software used. For more information including details on which processors support HT Technology, visit http://www.intel.com/info/hyperthreading.

Enhanced Intel SpeedStep® Technology
See the Processor Spec Finder at http://ark.intel.com or contact your Intel representative for more information.

Intel may make changes to specifications and product descriptions at any time, without notice.
Celeron, Centrino, Intel, Intel Logo, Intel Atom, Intel Core, Intel NetBurst, Intel SingleDriver, Intel SpeedStep, Pentium, Ultrabook are trademarks of Intel Corporation in the U.S. and/or other countries.

Copyright © 2012 Intel Corporation. All rights reserved
Talk Outline

- Clovertrail+ Overview
- Generational improvements
- Key enhancements – media, imaging, power management
- Power and performance
Overview: Intel® Atom™ Clovertrail+ SoC

Intel 32nm High-K + metal gate process
14x14mm coPOP package
CPU ISA compliant with Core 2 processors: SSE2, SSE3, SSSE3
A Look Inside the Clovertrail+ SoC

- **Intel® Atom™ CPU**: 512KB L2 Cache
- **North SoC Interconnect**: SGX544MP2, 533 MHz
- **Integrated Security Engine**: Crypto offload, secure boot
- **Video Decoder**: Hardware accelerated 1080p Video Decode and Encode of all common formats (e.g. H.264, VC1, MPEG2)
- **Video Encoder**: Hardware accelerated 1080p Video Encode
- **Video Decoder**: Hardware accelerated 1080p Video Decode
- **Integrated Audio DSP**: For low power audio playback
- **Low Power IOs**: Silicon Hive fully programmable ISP, 1080p, 3A, dual camera, still image capture
- **Memory Controller**: LPDDR2
- **2 GHz, Dual Core with Hyper-threading, 1MB total L2 Cache, Frequency Scaling**: 2-Channels x32b, 2 ranks/ch, 533MHz, 8.2GB/s

Intel® Atom™ CPU: 512KB L2 Cache
- **Memory Controller**: LPDDR2
- **2-Channels x32b, 2 ranks/ch, 533MHz, 8.2GB/s**: A Look Inside the Clovertrail+ SoC
Platform Generational Improvements

<table>
<thead>
<tr>
<th></th>
<th>Medfield Phone</th>
<th>Clovertrail+ Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Intel® Atom™ 1 core 2 threads 2GHz (Intel Atom Z2480)</td>
<td>Intel Atom 2 cores 4 threads 2GHz (Intel Atom Z2580)</td>
</tr>
<tr>
<td>Memory, Storage</td>
<td>1GB LPDDR2 @ 800MT/s 64GB eMMC 4.3</td>
<td>2GB LPDDR2 1066MT/s with OOO optimizations 256GB eMMC 4.41</td>
</tr>
<tr>
<td>Graphics</td>
<td>SGX 540 @ 400 MHz</td>
<td>SGX 544MP2 @ 400MHz (533MHz burst)</td>
</tr>
<tr>
<td>Video Decode</td>
<td>Standard codecs: H.264, MPEG4, VC1, DivX, VP6</td>
<td>Added VP8, Real Video, Sorensen</td>
</tr>
<tr>
<td>Camera/Imaging</td>
<td>8 MP with AF/LED Flash, 1080p30 video recording, 1.3 MP front facing</td>
<td>13 MP with AF/LED Flash, 1080p30 video recording, 2 MP front facing</td>
</tr>
<tr>
<td>Display</td>
<td>MIPI DSI up to 700Mbps/lane. Up to 13x7 panels</td>
<td>MIPI DSI up to 1Gbps/lane. Up to 19x12 panels concurrent with HDMI</td>
</tr>
<tr>
<td>IOs</td>
<td>Standard IOs</td>
<td>Additional ULPI, PWM, I²S</td>
</tr>
<tr>
<td>Cellular Modem</td>
<td>Intel® XMM™ 6260 - HSPA+ 21Mbps</td>
<td>Intel XMM 6360 (HSPA+ 42 Mbps), LTE modem in 2013</td>
</tr>
</tbody>
</table>
Clovertrail Generation Derivatives

- Clovertrail ‘twins’
 - Clovertrail: Win8 tablets
 - Clovertrail+: Android phones and tablets

- Project success drivers:
 - Started with solid Penwell baseline
 - Re-used >70% of the HW, FW and existing drivers
 - Intel was able to deliver 2 SoCs off the same base architecture

- Clovertrail+ delivers performance enhancements in same package and footprint
 - SGX544-MP2 (versus SGX545) – 4x GFLOPs, >3x Mtri/s, >2x Mpix/s, on-demand burst
 - Improved memory bandwidth and utilization
 - Improved fabric and uarch optimizations
Benefits Of Going To 2 Cores 4 Threads

• Going from Penwell to Clovertrail+, we go from 1 core, 2 threads to 2 cores, 4 threads
• Increases performance by adding logical cpu(s) on top of a physical core
 - Architectural state replicated per thread
 - Each thread presented as a core to the OS
 - 1 thread active – single thread uses all resources optimally
• Based on Simultaneous Multi-Threading (SMT)
 - Switch on Event (SoE) not efficient as pipeline flushed when swapping
 • Triggers on long latency operations given overhead
 - SMT interleaves multiple threads within pipeline
 • Superscalar in-order uarch benefit most
 • Supports thread switch every cycle
• SMT efficiency enables higher freq at same voltage
• 7-15% core area adder (excluding L2)
 • Much lower than multi-core
Clovertrail+ Memory/Media Performance Enhancements

- **Memory**
 - Improved QoS across concurrent memory accesses
 - Out-of-order transactions optimizing page accesses
 - Increased memory frequency from 400 to 533MHz LPDDR2 (2x32-bit)

- **Graphics**
 - GPU On-demand burst with CPU-GPU power sharing
 - Burst request by Graphics driver based on HW activity counters
 - PM unit manages DVFS; energy management framework ensures optimal burst states for GPU and CPU

- **Display**
 - Pipeline optimizations to support concurrent 19x12 MIPI DSI panel and 1080p30 over HDMI
 - WiDi stack optimized for latency and power with SoC accelerators
 - Clone mode end-to-end latency 60-80 msec for 1080p

- **Ultra low-power music playback** – MP3 playback <65mW platform power
Camera/Imaging Subsystem (CSS) Enhancements

- CSS includes programmable VLIW SIMD vector processor (pixel processing, multiple issue slots), scalar processor (control), DMA, MMU, local memory, CSI2 receiver
- Enhanced CSS firmware infrastructure supports zero shutter lag (ZSL), continuous viewfinder, Time Shift and multi-threading
- Integrated HDR
- Improved single-shot low light performance, faster AF
- 1080p Panorama
- Smart scene, smile and blink detection for smart shutter
Cheaper PMIC
Platform Arch enables OEM to choose Audio Codec and PHYs
Dynamic Power Management – S0ix/D0ix

- **S3** – Apps are frozen, drivers are suspended to D3

- **S0i3**
 - Apps acquire wake locks to prevent S3
 - Platforms enter S0i3 when all devices are in D0i3
 - When wake locks are released, Android PM pushes platform to S3, OS timers are disabled

- **S0**
 - User Activity, Incoming Call, etc.
 - Kernel Runtime PM framework allows drivers to do autonomous D0ix

- **Android S0ix**
Power Management in Action: CPU Active (S0)
Power Management in Action: CPU Idle (C6)
Power Management in Action: SOC Idle (S0i3)
CPU-GPU Dynamic Power Sharing

- PMIC
- Thermal Startup Configs
 - Chassis/Platform Thermal Config
 - Thermistor Value
- System Control Unit
 - GFX_Frequency
 - Skin_Thermal_State
 - Thermal Mgmt in IA
 - Skin_Thermal_State
 - Burst_Request
 - GFX Driver
 - Activity
 - GFX_Frequency
 - GFX_Frequency
 - CPU-GPU Thermal/Freq Manager
 - Skin_Thermal_State
 - Burst_Request

GPU (HW Activity Counters)

GFX Driver (Sets Boost Request based on Activity)
Generational Comparison: CPU Performance

AndEbench* is an Android benchmark that focusses on CPU performance, concentrating on integer operations.

Dual-core Clovertrail+ SoC supports up to 4 threads to provide higher CPU peak performance compared to Medfield on multi-threaded applications.

Clovertrail+ improves performance over Medfield by up to 2X

Note: Z2480 scores are measured on the Motorola RAZR i (Android 4.1.2) and Z2580 scores are measured on the Lenovo K900 (Android 4.2.1)
Generational Comparison: Graphics Performance

Kishonti’s GLBenchmark* 2.5.1 measures the performance of the graphics engine using complex 3D animations. The chart below uses the Egypt HD test in offscreen mode using a standard resolution of 1920x1080p.

Clovertrail+ SoC integrates the next generation graphics processor to greatly improve graphics performance over Medfield.

Clovertrail+ improves graphics performance over Medfield by up to 3X

Note: Z2480 scores are measured on the Motorola RAZR i (Android 4.1.2) and Z2580 scores are measured on the Lenovo K900 (Android 4.2.1)

*Other names and brands are property of others.
Smartphones are Multi-tasking Devices

Smartphones being more and more of the time for non-voice activities with significant amount of time spent on Gaming, Browsing, Utilities and Social Networking apps.

Top 10 features used - Global

- SMS: 93
- Take photos: 89
- Listen to music: 83
- Play games: 74
- Browse internet: 85
- Calendar: 65
- MMS: 67
- Instant messaging: 70
- Bluetooth: 60
- Social networking: 67
- Email: 64
- Apps: 65

D1: Feature usage
Base: Smartphone owners- Global 17372

Source: TNS Mobile Life Global Report 2013

Smartphones are multi-tasking devices as both web-based applications and Android store applications gain importance.
Fast Browser Performance

WebXPRT* from Principled Technologies measures Javascript / HTML5 Performance using web applications based on real-world usages.

Clovertrail+ leads the competition on real-world browser usages as indicated by the WebXPRT* scores.

Clovertrail+ provides great user experience for browser-based usages on a smartphone device.
Great Android User Experience

MobileXPRT* from Principled Technologies is a new benchmark that measures the real-world usage performance and end-user experience of Android devices.

![MobileXPRT* CP 2013 Scores](chart)

Source: Intel

Comp A and Comp B devices are two of the latest ARM-based premium Smartphones on the market today; Intel Smartphone is based on Clover Trail+ SoC.

Clovertrail+ is very competitive with other premium Smartphones on real-world media applications performed on Android devices.

Clovertrail+ provides great experience for typical end-user applications on Android devices.

Real-world usages in MobileXPRT:

- Detect Faces
- Apply Photo Effects
- Create Collages
- Create Slideshow
- Encrypt Content