Power Management Challenges in Wireless WAN SoCs

Gunnar Bublitz
Ralph Hasholzner, Christian Drewes
August 27, 2013
Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

This document contains information on products in the design phase of development.

Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance.

Intel, the Intel logo, Intel Atom, SMARTi, X-GOLD and XMM are trademarks of Intel Corporation in the U.S. and/or other countries. Bluetooth is a trademark owned by its proprietor and used by Intel Corporation under license.

*Other names and brands may be claimed as the property of others.

Copyright © 2013 Intel Corporation. All rights reserved.
Agenda Overview

1. Intel XMM™ 7160 Cellular Modem Platform Overview
2. Cellular Modem Power Management Basics
3. Modem Power Management Challenges
4. Modem Power Management Solutions
5. Conclusion and Outlook
Agenda

1. Intel XMM™ 7160 Cellular Modem Platform Overview
2. Cellular Modem Power Management Basics
3. Modem Power Management Challenges
4. Modem Power Management Solutions
5. Conclusion and Outlook
Cellular Modems in Tablet and Smartphone Context

- GNSS
- Modem Baseband
- WLAN Bluetooth
- Camera
- Sensors
- Audio
- RF Transceiver
- Atom SOC
- Power Amplifier
- Memory
- Display
- Power Delivery

• User experience 2013: Mobile broadband
 • 100Mbps (up from 42Mbps with 3G)
 • 50% latency reduction versus 3G
• Operator experience: $$$
 • All IP core network
 • More efficient utilization of spectrum
• Outlook 2014: 300Mbps, carrier-aggregation, WiFi-offloading
Intel® XMM™ 7160
LTE slim modem

Product Highlight

✓ Multi-mode multi-band 2G/3G/LTE slim modem
✓ Designed for smartphones, tablets, M2M and connected devices
✓ Powerful and flexible RF architecture to enable cost efficient band configurations as well as global roaming solutions for a world phone
✓ Reduced PCB sizes to enable attractive form factors
✓ Very low power consumption for longer active and standby times
✓ Support for LTE cat3 (DL 100 Mbps, UL 50 Mbps)
✓ Support for DC-HSPA+ 42 Mbps and HSUPA 5.7 Mbps

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. Performance tests are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.
X-GOLD™ 716
2G/3G/LTE Communication Processor

- 40 nm CMOS
- 9.5 x 7.5 mm² x 1.0 mm VF2BGA
- SoC architecture
 - CPU
 - On-die memory
 - External memory subsystem
 - HW accelerators for radio signal processing

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.
Agenda

1. Intel XMM™ 7160 Cellular Modem Platform Overview

2. Cellular Modem Power Management Basics

3. Modem Power Management Challenges

4. Modem Power Management Solutions

5. Conclusion and Outlook
The 5 Power Save Commandments and Their Amendments

1. Turn off idle building blocks
 • Different idle times might require different definitions of “off”
2. Run active building blocks at lowest possible supply voltage
3. Thou shalt not be active without good reason
 • Waiting for something is not a good reason
 • Thou shalt not poll
 • Thou shalt not wake up the system for uncritical tasks
 Schedule them when the system is awake for critical tasks
4. Use on-chip memory whenever possible
5. Supply power hungry blocks from DCDC converters
LTE Modem Low Power States – Overview

Optimized system power states tailored to critical modem scenarios
Agenda

1. Intel XMM™ 7160 Cellular Modem Platform Overview
2. Cellular Modem Power Management Basics
3. Modem Power Management Challenges
4. Modem Power Management Solutions
5. Conclusion and Outlook
Challenges

- Concurrent operations of multi radio access technology protocol stack SW under tight real-time constraints imposed by cellular network timing
- Shared hardware resources to meet the requirements of cost-sensitive consumer segments
- Low power consumption constraints of battery powered mobile devices
- Unpredictable nature of future applications traffic

These challenges must be addressed at system level – enabled by modem power management architecture
Concurrent Operation of Foreground or Background Apps

App #1 generates update message

App #2 server pushes update message

App #3 generates update message

Power consumption challenges due to frequent modem activity subject to network timers and configuration
40% of IPv4 packets (aka payload) are less than 50B in size: TCP ACKs, keep alives, IMs, status updates, VOIP silence suppression packets, etc.

Data applications (Twitter, Facebook, etc) keep the device always in connected state with very low data traffic.
Background Traffic

Inter-Arrival Times (IAT)

<table>
<thead>
<tr>
<th>Downlink Packets</th>
<th>Uplink Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-8% are bundled</td>
<td>20-40% are bundled</td>
</tr>
<tr>
<td>20% have IAT of 30ms</td>
<td>20% have IAT 100-500ms</td>
</tr>
<tr>
<td>10% have IAT of 60ms</td>
<td>The rest have IAT 1-500s</td>
</tr>
<tr>
<td>10% have IAT of 90ms</td>
<td></td>
</tr>
<tr>
<td>30% have IAT 100-300ms</td>
<td>65% are <100 bytes</td>
</tr>
<tr>
<td></td>
<td>20% are 150-200 bytes</td>
</tr>
<tr>
<td>85% are <100 bytes</td>
<td></td>
</tr>
</tbody>
</table>

Source: Intel 2011, 3GPP RAN2 R2-115386
Instant Messaging (IM) Traces

Source: Intel 2011, 3GPP RAN2 R2-115386

CDF of UL Packet Inter-arrival for IM Background Traffic

- Google Talk
- Yahoo Messenger

IM traffic heavily depends on IM client
Agenda

1. Intel XMM™ 7160 Cellular Modem Platform Overview
2. Cellular Modem Power Management Basics
3. Modem Power Management Challenges
4. Modem Power Management Solutions
5. Conclusion and Outlook
Power Optimization for Idle Modes

LTE idle mode

- Offloading main CPU tasks to power efficient HW accelerators
- Extensive use of DVFS
- All unused blocks are power gated

Receive & process periodic paging message from network

Normalized Battery Current [%]

0 20 40 60 80 100 120

Time

Normalized Battery Current [%]
Power Optimization for Data Calls
LTE cat3, tx @ 0dBm, band 3

Modem Components Transition to Lowest Possible Power State under Given Network & Application Conditions

Clock scaling
low channel bandwidth

Opt. Rx state
for low tx power

DVFS
low uplink data rates

100Mbps DL, 50Mbps UL
(20MHz channel)

75Mbps DL, 25Mbps UL
(10MHz channel)

75Mbps DL, 25Mbps UL
(10MHz channel)

75Mbps DL, UL signaling only
(10MHz channel)

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. Performance tests are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.
Power Distribution
Cost/Power Consumption Trade-Offs

Feature Segment
Area/cost optimized solution using single switched mode voltage regulator and no DVFS

Performance Segment
Power consumption optimized solution with several switched mode voltage regulators and DVFS
Power Optimization of Terminal / Base Station Interactions

- In LTE, there are 2 states
 - RRC Connected - always connected, data transmission, full control signaling
 - RRC Idle - no connection, limited control signaling (paging)
- Diverse data applications
 - Small and frequent packets – too many Idle to Connected mode transitions
 - One set of DRX parameters for all network – increase power consumption
- RAN enhancements for diverse data applications (eDDA)
 - Keep the user in RRC Connected
 - Efficiently move the user to RRC Idle

Power consumption optimization of mobile data devices goes beyond device boundaries
Agenda

1. Intel XMM™ 7160 Cellular Modem Platform Overview
2. Cellular Modem Power Management Basics
3. Modem Power Management Challenges
4. Modem Power Management Solutions

5. Conclusion and Outlook
XMM™ 7160 Power Management Challenges Summary

- XMM™ 7160 power management scheme provides outstanding power consumption while meeting tight system cost and time-to-market requirements
- LTE modem power states tailored to critical network & mobile data application scenarios
 - Active and standby modes
 - All possible LTE network configurations
 - Frequent small data transmission
- State-of-the-art fine granular SoC power saving techniques allow to operate all LTE modem sub-components always in the lowest possible power state