5th Generation Touchscreen Controller for Mobile Phones and Tablets

Hot Chips 2013
Milton Ribeiro
John Carey
August, 2013
Design Goals

- Quick design of derivatives
 - Platform-based design
 - Scalable analog front-end (AFE)
 - Scalable DSP datapath
 - Flexible hardware platform

- Superior noise suppression performance
 - Display noise: DCV com, AC Vcom, OLED
 - Finger-couple noise (charger noise): > 40 Vpp

- Innovation acceleration thru flexible hardware
 - Glove and hover support
 - Robust water rejection and wet finger tracking
 - Passive stylus support
 - Active stylus support
Architectural Elements (I)

- **CPU**
 - Cortex M0 @ 48 MHz
 - Support for flash memory (scalable)
 - Support for SRAM (scalable)
 - Support for ROM memory (scalable)

- **Low-power microcontroller infrastructure**
 - Support for Hibernate, Deep-sleep, Sleep, Idle and Active modes
 - On-chip power generation (LDO and voltage pump)

- **Robust analog front-end (AFE)**
 - Large on-chip integration capacitors
 - Signal attenuators in each channel
 - Large charge handling capability: > 240 pC per cycle
 - High-speed operation: up to 1 Msps
Architectural Elements (II)

- High-voltage signal generation
 - On-chip charge pump for 10V generation

- Configurable DSP datapath
 - Low-power linear and non-linear filtering
 - FIR and window filters
 - Median filtering
 - Digital quadrature demodulation for active stylus
 - Real-time noise-metrics
 - 2D image processing algorithms: filtering, peak-search, etc.

- Table-driven sequencer
 - Flexible timing generation enables advanced scanning modes
 - Easy integration with DDI ASICs for in-cell and on-cell integration
Gen5 Architecture Overview
TSG5_L Touchscreen Controller

- ARM CM0
- ARM Debug
- Low power
- CY S8 Process
 - 130nm
 - FLASH
 - 10V capable
TSG5 RX AFE Architecture

Per-edge signal processing, 40V charger noise
Gen5: Application of Flexible Timing Generation

- D67 = integrate for 2/3 of the period, or 67% duty cycle
 - Removes 3rd/6th/9th harmonics, e.g. for $F_{TX}=100\text{kHz}$ that’s 300/600/900kHz
 - Esp. effective for slow panels. 1.5x noise immunity for all the higher-freq noise
Gen 4/5 Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>Gen 4</th>
<th>Gen 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX drive (square wave)</td>
<td>2.6-10V</td>
<td>2.6-10V, C_{ext} or V_{TX}</td>
</tr>
<tr>
<td>MPTX</td>
<td>4</td>
<td>Full axis</td>
</tr>
<tr>
<td>TX frequency</td>
<td>$\leq 300\text{kHz}$</td>
<td>$\leq 500\text{kHz}$</td>
</tr>
<tr>
<td>Max RX sample rate</td>
<td>≥ 2 TX (sub-int)</td>
<td>$\frac{1}{2}$ TX (=per edge)</td>
</tr>
<tr>
<td>HW Baseline Cal.</td>
<td>Yes</td>
<td>Yes, larger</td>
</tr>
<tr>
<td>Max RX charge</td>
<td>8pC/edge</td>
<td>30..200pC/edge</td>
</tr>
<tr>
<td>RX ADC</td>
<td>10b SAR, shared, shared</td>
<td>8b SAR per ch.</td>
</tr>
<tr>
<td>LX channel</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LCD sync</td>
<td>Int/ext</td>
<td>Int/ext</td>
</tr>
<tr>
<td>Signal processing</td>
<td>M0 CPU, 32b</td>
<td>CPU or CE</td>
</tr>
<tr>
<td>Noise metric</td>
<td>CPU</td>
<td>CPU or CE</td>
</tr>
<tr>
<td>Autom. sequencing</td>
<td>Yes</td>
<td>Yes, table driven</td>
</tr>
<tr>
<td>Self & Mutual Cap</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>V_{DDD}</td>
<td>1.71 – 5.5V</td>
<td>1.71-5.5V</td>
</tr>
<tr>
<td>V_{CCA} (core)</td>
<td>2.4V</td>
<td>2.65-5.5V</td>
</tr>
</tbody>
</table>
Current Status and Future Developments

- Smartphone and tablet devices available **today**
 - TGS5_M: 36 I/Os and 11 channels, supporting phones up to 4.7”
 - TSG5_L: 58 I/Os and 21 channels, supporting phones and tablets up to 9”

- Large tablet and notebook device available later in the year
Thank You

mrib@cyress.com
jonc@cyress.com