4th Generation Intel® Core™ Processor, codenamed Haswell

Per Hammarlund
Haswell Chief Architect, Intel Fellow
August, 2013
Legal Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchase, including the performance of that product when combined with other products.

Intel, Core i7, Core i5, Core i3, Ultrabook, and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2013 Intel Corporation.
Sequence

Family of Innovations!

Power Efficiency and Management

FIVR – Fully Integrated Voltage Regulator

Cache Hierarchy and Interconnects

Gfx/Media

Intel® Microarchitecture (Haswell): Core

ISA

Wrap Up
Family of Innovations

- **Huge family**: SOC methodology, common architecture
- **Low power platform**: 20x idle power reduction, low power IO (I2C, SDIO, I2S, UART), Link power management (USB, PCIe, SATA)
- **Large eDRAM Cache**
- **Platform**: PSR (Panel Self Refresh)
- **FIVR**: Fully Integrated Voltage Regulator
- **Core**: FMA (Floating-point Multiply Add), 2x Cache BW, TSX (Transaction Synchronization Extension)
- **Graphics**: 2x in Ultrabooks, OpenCL 1.2, DX 11.1, OpenGL 4.0
- **Media**: 5x faster at 0.5x power

Modularity Options

<table>
<thead>
<tr>
<th>Value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Count</td>
<td>2-4</td>
</tr>
<tr>
<td>Graphics</td>
<td>GT1, GT2, GT3</td>
</tr>
<tr>
<td>Active Power Level</td>
<td>Tablet to Desktop</td>
</tr>
<tr>
<td>Idle Power</td>
<td>Variable</td>
</tr>
<tr>
<td>Cache Size</td>
<td>Variable</td>
</tr>
<tr>
<td>Interconnects</td>
<td>Variable</td>
</tr>
<tr>
<td>Platforms</td>
<td>Traditional, power optimized</td>
</tr>
</tbody>
</table>

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to: http://www.intel.com/performance
Intel Process 22nm Process Technology and Tick/Tock Development Model

Enhanced version of Intel’s 22nm Process Technology
- 22nm Tri-Gate transistors enhanced to reduce leakage current 2-3X with the same frequency capability
- Haswell version of 22nm has 11 metal interconnect layers compared to 9 layers on Ivy Bridge to optimize performance, area and cost

Haswell builds on innovations in 2nd and 3rd Generation Intel® Core™ i3/i5/i7 Processors (Sandy Bridge/Ivy Bridge) with optimized Intel process technology!
Sequence

Family of Innovations!

Power Efficiency and Management

FIVR – Fully Integrated Voltage Regulator
Cache Hierarchy and Interconnects
Gfx/Media

Intel® Microarchitecture (Haswell): Core
ISA

Wrap Up
Power Efficiency: Maximizing Power-Limited Performance

- Extended operating range
 - Increased Turbo
 - New C-states, improved latency
 - Power efficient features: better than voltage / frequency scaling
 - Continued focus on gating unused logic and low-power modes
 - Optimized manufacturing and circuits

- Independent frequency domains
 - Cores separated from LLC+Ring for fine-grained control
 - Power Control Unit dynamically allocates budget when power-limited
 - Prioritization based on run-time characteristics selects domain with the highest performance return
Haswell Power Management Innovation

• All day experiences
 – Improving power efficiency for active workloads

• Evolutionary improvements

• New extremely low-power active state
 – 20x improvement from prior generation
 – Enables significant improvement in realizable battery life
 – Automatic, continuous, fine-grained, transparent to well written SW
 – Leverages learnings from phone & tablet development

Everything that is not needed is turned off!

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance
Sequence

Family of Innovations!
Power Efficiency and Management

FIVR – Fully Integrated Voltage Regulator
Cache Hierarchy and Interconnects
Gfx/Media

Intel® Microarchitecture (Haswell): Core
ISA

Wrap Up
Ivy Bridge Platform

- Core VR variable voltage: 0V-1.2V
- Graphics VR variable voltage: 0V-1.2V
- System agent VR
- PLL VR 1.8V

Haswell Platform

- Haswell Processor
- FIVR VRs:
 - Vccsa
 - Vccio
 - Vccioa
 - VccCore 0
 - VccCore 1
 - VccCore 2
 - VccCore 3
 - VccCache
 - Graphics0
 - Graphics1
 - VccEDRAM
 - VccOPIO

- Logic Blocks

Example voltage planes
FIVR: Platform Goodness

Ivy Bridge
- Back is all power
- Large inductors, butterfly mounted through board
- 5.4mm thick

Haswell
- Backside bare
- Small inductors & caps & 75% fewer
- Space for 10% larger battery
- 3.4mm thick

2mm thinner; ~$5 cheaper; space for 10% larger battery
Sequence

Family of Innovations!
Power Efficiency and Management
FIVR – Fully Integrated Voltage Regulator

Cache Hierarchy and Interconnects
Gfx/Media
Intel® Microarchitecture (Haswell): Core
ISA
Wrap Up
Cache, Interconnect and System Agent

• More access bandwidth per slice of shared LLC
 – New dedicated pipelines handle data and non-data accesses independently

• Improved load balancing to System Agent
 – Better credit-based management more efficiently shares resources

• Improved DRAM write throughput
 – Deeper pending queues: more decoupling, better scheduling

• Lower power, better efficiency
 – Focused effort to reduce idle and active power (next section)
Large eDRAM Cache

- Haswell introduces configurations with large graphics & large cache
- Cache attributes
 - High throughput and low latency
 - Flat latency vs. sustained bandwidth curve
 - Fully shared between Graphics, Media, and Cores for very efficient multi-media computing
Large Caches in Graphics Workloads

- **Intra-frame**
 - Intra-render pass – capture spatial and temporal locality within a surface
 - Captured in moderate cache sizes (1-8MB LLC). SNB Si shows 20-30% speedup
 - Inter-render pass – capture a full surface from generation to subsequent consumption (shadow maps, render targets)
 - Captured in big cache sizes (16-64+MB LLC). CRW Si shows 20-30% speedup

- **Inter-frame**
 - Capture texture reuse across frames due to continuity between frames
Large Cache Performance and Latency

Small latency sensitivity with load. Sustainable for random traffic.

Pre-production system measurements, product measurements may vary.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance
Sequence

Family of Innovations!

Power Efficiency and Management

FIVR – Fully Integrated Voltage Regulator

Cache Hierarchy and Interconnects

Gfx/Media

Intel® Microarchitecture (Haswell): Core

ISA

Wrap Up
Haswell Processor Graphics Architecture Building Blocks

Scalable Architecture partitioned into 6 domains:

1. Global Assets: Geometry Front-end up to Setup
2. Slice Common: Rasterizer, Level 3 Cache (L3$) and Pixel Back-end
3. Sub-Slice: Shaders (EUs), Instruction Caches (IC$) and Samplers
 - Scalable slices for performance and GFlop tuning
4. Multi-Format Video CODEC Engine (MFX)
5. Video Quality Enhancement Engine
6. Displays

Sets the stage for Scale-up!!
Video Codec

Introducing hardware-based SVC (Scalable Video Coding) codec
- Allowing single encoded bit-stream for heterogeneous devices
- Key enabler for multi-participant video conferencing

MJPEG (Motion JPEG) hardware decoder
- Enabling low power HD video conferencing for USB2 webcam

MPEG2 hardware encoder
- DVD creation
- DLNA streaming

4Kx2K video playback
Continue to drive encoder quality
- Introduced through the encoding modes in Media SDK

Haswell adds newer codec on top existing codecs in 3rd Generation Intel® Core™ processors
High Quality Video Processing

Dedicated video processing on newly designed Video Quality Engine (VQE)

Haswell supports an extensive suite of video processing functions including:

- De-Noise (DN)
- De-Interlace (DI)
- Film-mode Detection (FMD)
- Skin Tone Detection (STD)
- Skin Tone Enhancement (STE)
- Total Color Control (TCC)
- Adaptive Contrast Enhancement (ACE)
- Advanced Video Scalar (AVS)
- Gamut Compression (GC)
- Gamut Expansion (GE)
- Skin Tone Tuned Image Enhancement Filter
- Frame Rate Conversion (FRC)
- Image Stabilization (IS)

1New on Haswell

Higher quality video at lower power!
Media: Quick Sync Video Performance and Power

- 4-12x real-time transcode at various quality modes
- 10-hour video playback time on latest Apple MacBook Air
- Multi-stream 4K decode
- > real-time 4K Encode

*Measurements based on Intel Demo Clip in Cyberlink Media Espresso Fast Conversion Mode

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance
Sequence

Family of Innovations!
Power Efficiency and Management
FIVR – Fully Integrated Voltage Regulator
Cache Hierarchy and Interconnects
Gfx/Media

Intel® Microarchitecture (Haswell): Core
ISA
Wrap Up
Haswell Core at a Glance

Next generation branch prediction
• Improves performance and saves wasted work

Improved front-end
• Initiate TLB and cache misses speculatively
• Handle cache misses in parallel to hide latency
• Leverages improved branch prediction

Deeper buffers
• Extract more instruction parallelism
• More resources when running a single thread

More execution units, shorter latencies
• Power down when not in use

More load/store bandwidth
• Better prefetching, better cache line split latency and throughput, double L2 bandwidth
• New modes save power without losing performance

No pipeline growth
• Same branch mis-prediction latency
• Same L1/L2 cache latency
Haswell Buffer Sizes

Extract more parallelism in every generation

<table>
<thead>
<tr>
<th></th>
<th>Nehalem</th>
<th>Sandy Bridge</th>
<th>Haswell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out-of-order Window</td>
<td>128</td>
<td>168</td>
<td>192</td>
</tr>
<tr>
<td>In-flight Loads</td>
<td>48</td>
<td>64</td>
<td>72</td>
</tr>
<tr>
<td>In-flight Stores</td>
<td>32</td>
<td>36</td>
<td>42</td>
</tr>
<tr>
<td>Scheduler Entries</td>
<td>36</td>
<td>54</td>
<td>60</td>
</tr>
<tr>
<td>Integer Register File</td>
<td>N/A</td>
<td>160</td>
<td>168</td>
</tr>
<tr>
<td>FP Register File</td>
<td>N/A</td>
<td>144</td>
<td>168</td>
</tr>
<tr>
<td>Allocation Queue</td>
<td>28/thread</td>
<td>28/thread</td>
<td>56</td>
</tr>
</tbody>
</table>
Haswell Execution Unit Overview

Unified Reservation Station

- Port 0: Integer ALU & Shift
- Port 1: Integer ALU & LEA
- Port 2: Load & Store Address
- Port 3: Store Data
- Port 4: Integer ALU & LEA
- Port 5: Integer ALU & Shift
- Port 6: Store Address
- Port 7: Store Address

- **FMA FP Multiply**: Doubles peak FLOPs, benefits legacy
- **FMA FP Add**: Benefits legacy
- **Vector Int Multiply**: For vector workloads
- **Vector Int ALU**: For vector workloads
- **Vector Logicals**: For vector workloads
- **Branch**: Reduces Port0 Conflicts
- **Divide**: For floating-point division
- **Vector Shifts**: For vector shifts

- **4th ALU**: Great for integer workloads, frees Port0 & 1 for vector

- **2xFMA**
 - Doubles peak FLOPs
 - Two FP multiplies

- **New Branch Unit**
 - Reduces Port0 Conflicts
 - 2nd EU for high branch code

- **New AGU for Stores**
 - Leaves Port 2 & 3 open for Loads

Intel® Microarchitecture (Haswell)
FMA (Floatingpoint Multiply Add)

- 2 new FMA units provide 2x peak FLOPs/cycle of previous generation
- 2X cache bandwidth to feed wide vector units
 - 32-byte load/store for L1
 - 2x L2 bandwidth
- 5-cycle FMA latency same as an FP multiply

FMA provides improved accuracy and performance

<table>
<thead>
<tr>
<th>Latency (clks)</th>
<th>Prior Gen</th>
<th>New Haswell</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>MulPS, PD</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>AddPS, PD</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mul+Add /FMA</td>
<td>8</td>
<td>5</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Core Cache Size/Latency/Bandwidth

<table>
<thead>
<tr>
<th>Metric</th>
<th>Nehalem</th>
<th>Sandy Bridge</th>
<th>Haswell</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Instruction Cache</td>
<td>32K, 4-way</td>
<td>32K, 8-way</td>
<td>32K, 8-way</td>
</tr>
<tr>
<td>L1 Data Cache</td>
<td>32K, 8-way</td>
<td>32K, 8-way</td>
<td>32K, 8-way</td>
</tr>
<tr>
<td>Fastest Load-to-use</td>
<td>4 cycles</td>
<td>4 cycles</td>
<td>4 cycles</td>
</tr>
<tr>
<td>Load bandwidth</td>
<td>16 Bytes/cycle</td>
<td>32 Bytes/cycle (banked)</td>
<td>64 Bytes/cycle</td>
</tr>
<tr>
<td>Store bandwidth</td>
<td>16 Bytes/cycle</td>
<td>16 Bytes/cycle</td>
<td>32 Bytes/cycle</td>
</tr>
<tr>
<td>L2 Unified Cache</td>
<td>256K, 8-way</td>
<td>256K, 8-way</td>
<td>256K, 8-way</td>
</tr>
<tr>
<td>Fastest load-to-use</td>
<td>10 cycles</td>
<td>11 cycles</td>
<td>11 cycles</td>
</tr>
<tr>
<td>Bandwidth to L1</td>
<td>32 Bytes/cycle</td>
<td>32 Bytes/cycle</td>
<td>64 Bytes/cycle</td>
</tr>
<tr>
<td>L1 Instruction TLB</td>
<td>4K: 128, 4-way</td>
<td>4K: 128, 4-way</td>
<td>4K: 128, 4-way</td>
</tr>
<tr>
<td></td>
<td>2M/4M: 7/thread</td>
<td>2M/4M: 8/thread</td>
<td>2M/4M: 8/thread</td>
</tr>
<tr>
<td>L1 Data TLB</td>
<td>4K: 64, 4-way</td>
<td>4K: 64, 4-way</td>
<td>4K: 64, 4-way</td>
</tr>
<tr>
<td></td>
<td>2M/4M: 32, 4-way</td>
<td>2M/4M: 32, 4-way</td>
<td>2M/4M: 32, 4-way</td>
</tr>
<tr>
<td></td>
<td>1G: fractured</td>
<td>1G: 4, 4-way</td>
<td>1G: 4, 4-way</td>
</tr>
<tr>
<td>L2 Unified TLB</td>
<td>4K: 512, 4-way</td>
<td>4K: 512, 4-way</td>
<td>4K+2M shared: 1024, 8-way</td>
</tr>
</tbody>
</table>

All caches use 64-byte lines

Intel® Microarchitecture (Haswell); Intel® Microarchitecture (Sandy Bridge); Intel® Microarchitecture (Nehalem)
Family of Innovations!

Power Efficiency and Management

FIVR – Fully Integrated Voltage Regulator

Cache Hierarchy and Interconnects

Gfx/Media

Intel® Microarchitecture (Haswell): Core

Wrap Up
Haswell New Compute Instructions

Intel® Advanced Vector Extensions 2 (Intel® AVX2)

• Includes
 – 256-bit Integer vectors
 – FMA: Fused Multiply-Add
 – Full-width element permuters
 – Gather
• Benefits
 – High performance computing
 – Audio & Video
 – Games
• New Integer Instructions
 – Indexing and hashing
 – Cryptography
 – Endian conversion – MOVBE

• Full Instruction Specification Available at: http://software.intel.com/en-us/avx/

<table>
<thead>
<tr>
<th></th>
<th>Instruction Set</th>
<th>SP FLOPs per cycle</th>
<th>DP FLOPs per cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nehalem</td>
<td>SSE (128-bits)</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Sandy Bridge</td>
<td>AVX (256-bits)</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Haswell</td>
<td>AVX2 & FMA</td>
<td>32</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Field Pack/Extract</td>
<td>BZHI, SHLX, SHRX, SARX, BEXTR</td>
</tr>
<tr>
<td>Variable Bit Length Stream Decode</td>
<td>LZCNT, TZCNT, BLSR, BLSMSK, BLSI, ANDN</td>
</tr>
<tr>
<td>Bit Gather/Scatter</td>
<td>PDEP, PEXT</td>
</tr>
<tr>
<td>Arbitrary Precision Arithmetic & Hashing</td>
<td>MULX, RORX</td>
</tr>
</tbody>
</table>
Cryptography protects nearly all data and transactions you want to keep secure.

SHA-256:
- AVX2 - Wider
- Multibuffer
- PCLMULQDQ

RSA 2048:
- MULX - Multiply

AES GCM:
- AES-NI

Haswell’s microarchitecture improvements and new instructions enable substantial gains in cryptography.

SHA-256:
- RORX – Rotates, AVX2
Locks!

HLE: Hardware Lock Elision – XACQUIRE/XRELEASE

- Software uses legacy compatible hints to identify critical section. Hints ignored on hardware without TSX.
- Hardware support to execute transactionally without acquiring lock
- Abort causes a re-execution without elision
- Hardware manages all architectural state

RTM: Restricted Transactional Memory – XBEGIN/XEND

- Software uses new instructions to specify critical sections
- Similar to HLE but flexible interface for software to do lock elision
- Abort transfers control to target specified by XBEGIN operand
- Abort information returned in a general purpose register (EAX)

XTEST and XABORT – Additional instructions

Bringing Transactional Memory to the Mainstream
Substitute atomic operations, locks, and non-blocking sync. with RTM

• Average 1.41x speedup with 8 threads

Workloads benefit from RTM by

1. Exploiting concurrency within a critical section (**nufft**)
2. Reducing the synchronization cost (**ssca2, physicsSolver, nufft, histogram**)
3. Replacing complex non-blocking sync. w/ regular memory ops (**canneal**)

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance
Virtualization on Haswell with Intel® VT

Substantially improved guest/host transition times

New *Accessed* and *Dirty* bits for Extended Page Tables (EPT) eliminates major cause of vmexits

Overhauled TLB invalidations – lower latency, less serialization

New VMFUNC instruction enables hyper-calls without a vmexit

Intel® VT-d adds 4-level page walks to match Intel® VT-x

Haswell reduces round-trip to <500 cycles

Intel VT-x Roundtrip over Generations
Sequence

Family of Innovations!

Power Efficiency and Management

FIVR – Fully Integrated Voltage Regulator

Cache Hierarchy and Interconnects

Gfx/Media

Intel® Microarchitecture (Haswell): Core

ISA

Wrap Up
Wrap Up!

- **Huge family**: SOC methodology, common architecture

- **Low power platform**: 20x idle power reduction, low power IO (I2C, SDIO, I2S, UART), Link power management (USB, PCIe, SATA)

- **Large eDRAM Cache**

- **Platform**: PSR (Panel Self Refresh)

- **FIVR**: Fully Integrated Voltage Regulator

- **Core**: FMA (Floating-point Multiply Add), 2x Cache BW, TSX (Transaction Synchronization Extention)

- **Graphics**: 2x in Ultrabooks, OpenCL 1.2, DX 11.1, OpenGL 4.0

- **Media**: 5x faster at 0.5x power

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance