Microprocessors for Roots-of-Trust

Kristopher Carver
Technical Director
BlueRISC, Inc.

HotChips 2013 – August 27th
Current Target Systems

- High value Defense systems
 - Contain security critical algorithms
 - Embedded systems
 - Primarily FPGA-based
 - Hybrid processor/hardware designs

- High security commercial systems
Traditional Security Mindset

- Based on conventional software and hardware
 - Operate on a known ISA
 - Susceptible to:
 - Software reverse engineering and modification
 - Fault injection
 - Power analysis (DPA, SPA, PEA, etc.)

- **Attack surface not actually reduced**
 - In many cases, it is increased through simply patching security holes
 - Typically through new software
Goal to Achieve Roots-of-Trust

- Break attackers assumptions
 - ISA Encoding to Operation
 - Power profile to Execution
 - Timing
- Securely root system-level security approaches
- Increase time and cost for attack
Microprocessors for Roots-of-Trust

- Address security without introducing new attack surfaces
- Move Roots-of-Trust into the architecture itself
 - Core Root-of-Trust
 - Randomized ISA Support
 - ISA support for power and timing control
 - Secure Storage
 - Shared Roots-of-Trust
 - Root-of-Trust for Co-Execution
 - Root-of-Trust for Key Management
 - Root-of-Trust for Measurement
ISA Definition and Encoding

- ISA can be represented by a tree structure
- Tree defined by bit positions and meanings
ISA Definition and Encoding

- Transformations to meanings and positions
- Underlying operations do not change but new ISA
Unknown ISA Attack Methodology

16-bit ISA complexity estimate ≈ 340 bit key + time consuming trials

1. Define Test ISA
2. Create simulator
3. Run target code
4. Determine if results “make sense” → Step 1

Specific details purposefully withheld due to sensitivity issues
tinyTrustGUARD

- 16-bit processor architecture
- Per-compilation processor with unique ISA
- Software toolkit that generates both software encoding and unique microcontroller/ISA
Compilation-unique ISA is great but you can also make it device-unique!
TrustGUARD Secure Processor

- Enables device-unique randomized ISA and execution environment
 - Ties ISA encoding and execution to physical properties
- Adds fluidity to ISA encoding/decoding
 - ISA supported; enabled by compilation approach
- Extends tinyTrustGUARD to 32-bit, dual issue core
 - Extends shared Roots-of-Trust to external systems
- Cryptographic Acceleration
 - DPA resilient AES128/256, SHA1/256, HW-accelerated RSA with Montgomery Multiplier, etc.
Conventional vs. TrustGUARD

Conventional Microprocessor VS. BlueRISC TrustGUARD processors

COMPILER

Instruction Set
Architecture (ISA)

ISA is FIXED

Microprocessor

Security Focused Compilation for Chip-unique Execution and Technology Insertion Tools

Instruction Set
Architecture (ISA)

BlueRISC ISA is FLUID and RANDOM

Execution Supports Compiler-Managed Randomized ISA and Secured Software Execution
Runtime Re-Definition of ISA
TrustGUARD Roots-of-Trust Diagram

More information can be provided in proper setting.
Tooling and Infrastructure

Source

BlueRISC GCC Compiler

BlueRISC Backend

Binary

BlueRISC Active Services API and Libraries

MorSE Binary-level Optimizing Compiler

Compilation Unique Binary

Optimizing Compiler

Design

Deployment

Deploy

Runtime ISA Definition

Debug

Device Unique Binary

Debug UNALLOWED

Secure Field Upgrade

Compilation Unique Binary

Functional Simulation

Cycle Accurate Simulation

Deployment

Secure Field Upgrade

: Security-Focused steps

www.bluerisc.com
Performance Implications

- tinyTrustGUARD
 - Parametric decoder results in minimal, cycle-time overhead

- TrustGUARD
 - Minimized through architectural support
 - Compiler managed fluidity control
 - 1-time runtime ISA re-definition
 - <1% performance impact relative to compilation-only techniques
 - 1.5 DMIPS/MHz with new mode of secure execution

More information can be provided in proper setting
Integration Options

PCI-Express Add-on Card

- Instantiated in FPGAs
- Completely synthesizable core
- TrustGUARD as main processor or security processor

ExpressCARD Form-Factor

- ASIC flow developed and available

Embedded IP
Questions?

Web: http://www.bluerisc.com
Email: sales@bluerisc.com
Phone: (413) 359-0599