SPARC64™ X+: Fujitsu’s Next Generation Processor for UNIX servers

August 27, 2013
Toshio Yoshida
Processor Development Division
Enterprise Server Business Unit
Fujitsu Limited
Agenda

✨Fujitsu Processor Development

✨SPARC64™ X+

- Design Concept and Processor Overview
- Software on Chip (SWoC)
- Micro-Architecture
- System Architecture
- RAS
- Power Management

✨Summary
Fujitsu Processor Development

- Virtual Machine Architecture
- Software on Chip
- High-speed Interconnect
- HPC-ACE
- System on Chip
- Hardware Barrier
- Multi-core Multi-thread
- L2$ on Die
- Non-Blocking $
- O-O-O Execution
- Super-Scalar
- Single-chip CPU
- Store Ahead
- Branch History
- Prefetch
- $ ECC
- Register/ALU Parity
- Instruction Retry
- $ Dynamic Degradation
- Error Checkers/History

SPARC64™ X+
Fujitsu Processor Development

- Virtual Machine Architecture
- Software on Chip
- High-speed Interconnect

HPC-ACE
- System on Chip
- Hardware Barrier

Multi-core Multi-thread
- L2$ on Die
- Non-Blocking $
- O-O-O Execution
- Super-Scalar

Single-chip CPU
- Store Ahead
- Branch History
- Prefetch

$ ECC
- Register/ALU Parity
- Instruction Retry
- $ Dynamic Degradation
- Error Checkers/History

SPARC64™ X+
Agenda

◆ Fujitsu Processor Development

◆ SPARC64™ X+
 ■ Design Concept and Processor Overview
 ■ Software on Chip (SWoC)
 ■ Micro-Architecture
 ■ System Architecture
 ■ RAS
 ■ Power Management

◆ Summary
Design of SPARC64™ X / X+

◆ Combine Fujitsu HPC and UNIX processor features

✓ Single-Thread Performance
 – Higher clock speed
 – Micro-architectural enhancements
 – Directly connected DIMMs

✓ High Throughput for massive data processing
 – SIMD parallelism and more registers
 – Multi-core and multi-thread
 – High bandwidth interconnect and memory links
 – Scalability up to 64 sockets (2048 threads)

✓ Software on Chip (SWoC) for specific applications
 – Cipher, Decimal, Database
SPARC64™ X+ Chip Overview

- **Architecture Features**
 - 16 cores x 2 SMT threads
 - Shared 24 MB L2$
 - Memory and I/O Controllers
 - HPC-ACE
 - SWoC (Software on Chip)

- **28nm CMOS**
 - 24.0mm x 25.0mm
 - 2,990M transistors
 - 1,500 signal pins
 - 3.5GHz+

- **Performance (peak)**
 - 448GFlops+
 - 102GB/s memory throughput
Agenda

◆ Fujitsu Processor Development

◆ SPARC64™ X+
 ▪ Design Concept and Processor Overview
 ▪ Software on Chip (SWoC)
 ▪ Micro-Architecture
 ▪ System Architecture
 ▪ RAS
 ▪ Power Management

◆ Summary
Software on Chip (SWoC)

◆ SPARC64™ X / X+ Software on Chip
 ✓ Cipher
 ✓ Decimal (IEEE754 DPD, NUMBER)
 ✓ Database processing

◆ Accelerate specific software functions in hardware
 ✓ SWoC engines implemented in floating-point unit can use 128 floating-point registers, software pipelining
 ✓ Area/number of gates < 3% of core and < 1% of chip
Cipher and Decimal Performance

- **Cipher**
 - AES/DES/SHA/RSA in SPARC64™ X
 - RSA further improved in SPARC64™ X+
 - New instruction for RSA sign library

- **Decimal**
 - SPARC64™ X+ micro-architectural enhancements speed up several NUMBER libraries

RSA Sign Performance (Kernel)

- SPARC64™ VII: x1.37
- SPARC64™ X: x2.2
- SPARC64™ X+: x1.37

NUMBER Library Performance

- ADD: x1.64
- MULTIPLY: x1.32
Database Acceleration

- Fine-grained data manipulation
 - Byte vector in SPARC64™ X
 - Bit vector enhanced in SPARC64™ X+

- Integer Byte Compare
 - Enhanced ISA supports SIMD operation
 - Enhanced core supports instruction in both floating-point pipelines

Integer Byte Compare

<table>
<thead>
<tr>
<th>SPARC64™ X</th>
<th>FLA</th>
<th>64 bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPARC64™ X+</td>
<td>FLA+FLC</td>
<td>128 bit</td>
</tr>
<tr>
<td></td>
<td>FLB+FLD</td>
<td></td>
</tr>
</tbody>
</table>

Bit Vector Operations

Shift -> Mask -> Or

Extract 2 bit fields from rs1

-> Logical operation with rs2
Agenda

♦ Fujitsu Processor Development

♦ SPARC64™ X+
 ■ Design Concept and Processor Overview
 ■ Software on Chip (SWoC)
 ■ Micro-Architecture
 ■ System Architecture
 ■ RAS
 ■ Power Management

♦ Summary
Micro-Architectural Enhancements 1/2

- Register window switches
 - Out-of-order access to 48 integer registers (current & next window)
 - No penalty for all window switches between same two windows
 - SPARC64™ X handles only one window switch without penalty

- Improved Branch prediction
 - Rehashed indirect branch predictor
 - Indirect branch with variable target address
 - Local pattern branch predictor
 - More pattern history table entries
Micro-Architectural Enhancements 2/2

• L1 data cache
 – Dedicated write pipeline
 • 64 RAM banks (8 sets of 8-banked RAMs)
 • One write and two reads each cycle, except when RAM bank conflict occurs
 – Faster atomic memory operations
 – Increased hardware prefetch throughput

L1-D Cache Schematic

L1-D Cache Throughput

Normalized Performance

Read only	Write only	Copy
SPARC64 VII+ | SPARC64 X | SPARC64 X+
Agenda

◆ Fujitsu Processor Development

◆ SPARC64™ X+
 ▪ Design Concept and Processor Overview
 ▪ Software on Chip (SWoC)
 ▪ Micro-Architecture
 ▪ System Architecture
 ▪ RAS
 ▪ Power Management

◆ Summary
SPARC64™ X / X+ System Architecture

◆ Scales from 1 to 64 CPU sockets (2048 threads)
 – Directory-based cache coherency
 – High-speed interconnect, up to 25Gbps per lane in SPARC64™ X+
 (Up to 14.5Gbps in SPARC64™ X)

◆ System Configuration
 – Building Block (BB) is 4 CPUs and 2 XBs
 – Up to 4 BBs can be connected by XBs
 – 16BBs can be connected via XB-Boxes

Building Block (4 CPU Sockets)

16 BBs (64 CPU Sockets)
(Each line represents connections between a BB and two XBs in a XB-Box)
System Scalability

- SPARC64™ X systems demonstrate high scalability across a wide-range of applications
 - Integer, Floating-Point, Java, ERP, DWH

SPARC64™ X efficiently scales to 64 CPU sockets
Agenda

◆ Fujitsu Processor Development

◆ SPARC64™ X+
 ▶ Design Concept and Processor Overview
 ▶ Software on Chip (SWoC)
 ▶ Micro-Architecture
 ▶ System Architecture
 ▶ RAS
 ▶ Power Management

◆ Summary
Reliability, Availability, Serviceability

Mainframe-level RAS features for SPARC64™ X / X+

- Number of checkers increased to ~54,000
- System bus mechanisms for self-recovery and lane dynamic degradation

→ Guarantee Data Integrity and Keep on Running

SPARC64™ X+
Agenda

◆ Fujitsu Processor Development

◆ SPARC64™ X+
 □ Design Concept and Processor Overview
 □ Software on Chip (SWoC)
 □ Micro-Architecture
 □ System Architecture
 □ RAS
 □ Power Management

◆ Summary
Power Management

Save energy while Idle

- CPU Lower Power (LP) State introduced in SPARC64™ X
 - Dynamically decrease frequency and voltage
 - Keep all data and caches coherent
 - State transition managed by software

✓ 45% power savings measured in SPARC64™ X
✓ Transition time between states is ~1.7ms
✓ Continue working while in transition

- DIMM power saving mechanism
 - Memory controller supports two lower power states
 - Power-down
 - Self-refresh

~1.7ms
45% power savings

Work → Work@LP
Work@LP → Work

Idle → Idle@LP
Idle@LP → Idle
Agenda

◆ Fujitsu Processor Development

◆ SPARC64™ X+
 ■ Design Concept and Processor Overview
 ■ Software on Chip (SWoC)
 ■ Micro-Architecture
 ■ System Architecture
 ■ RAS
 ■ Power Management

◆ Summary
Summary

- SPARC64™ X+ is Fujitsu’s latest SPARC processor, designed for Fujitsu’s next generation UNIX servers.

- SPARC64™ X+ realizes improved single-thread performance with a higher clock speed, micro-architectural enhancements, and SWoC.

- SPARC64™ X / X+ systems realize high scalability, from 1 to 64 CPU sockets (2048 threads).

- SPARC64™ X+ implements extensive RAS features.

- Fujitsu will continue to develop the SPARC64™ series.
Abbreviations

SPARC64™ X+

- **RSA:** Reservation Station for Address generation
- **RSE:** Reservation Station for Execution
- **RSF:** Reservation Station for Floating-point
- **RSBR:** Reservation Station for Branch
- **GUB:** General-purpose Update Buffer
- **FUB:** Floating-point Update Buffer
- **GPR:** General-Purpose Register
- **FPR:** Floating-Point Register
- **CSE:** Commit Stack Entry
- **EAG:** Effective Address Generator
- **EX:** Execution unit (Integer)
- **FL:** Floating-point unit
- **HPC-ACE:** High Performance Computing-Arithmetic Computational Extensions
- **ERP:** Enterprise Resource Planning
- **DWH:** Data Warehouse